Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 27, 2018
Accepted March 22, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
질소 도핑 티타니아의 제조와 광촉매 활용의 연구동향
Brief Review on the preparation of N-doped TiO2 and Its Application to Photocatalysis
인하공업전문대학 화공환경과, 22212 인천광역시 미추홀구 인하로 100 1중소벤처기업진흥공단 진단기술처, 52851 경상남도 진주시 동진로 430
Department of Chemical and Environmental Technology, Inha Technical College, 100, Inha-ro, Michuhol-gu, Incheon, 22212, Korea 1Corporate Diagnosis & Technology Department, Korea SMEs and Startups Agency, 430, Dongjin-ro, Jinju-si, Gyeongsangnam-do, 52851, Korea
Korean Chemical Engineering Research, June 2019, 57(3), 331-337(7), 10.9713/kcer.2019.57.3.331 Epub 3 June 2019
Download PDF
Abstract
광촉매로 검토된 물질 중에는 티타니아가 가장 큰 주목을 받아왔다. 그러나, 티타니아는 밴드갭 에너지가 높음으로 인하여 자외선 영역에서만 그 활성을 나타낼 수 있는 것으로 알려져 있다. 따라서, 티타니아의 광촉매 활성을 가시광선 영역으로 확대하려는 노력들이 있어왔으며, 대표적인 방안들은 티타니아의 표면 개질을 통해 시도되었다. 티타니아 광촉매가 가시광선 영역에서 활성을 갖기 위해서는 표면 개질을 요구한다. 티타니아의 다양한 표면 개질 방안 중 질소 도핑은 제조의 수월성과 친환경적인 장점을 가진다. 질소 도핑 티타니아는 가시광선 영역에서도 가전자대의 전자가 전도대로 여기되며, 광촉매 활성을 잘 나타내고 있다. 본 연구에서는 발표된 많은 자료에 근거하여 티타니아 내부에 도핑된 질소 형태에 주목하였다. 여전히 논쟁이 계속되는 질소 도핑 제조방법과 티타니아 내부의 질소 형태에 대해서 살펴보았다. 특히, 질소 도핑 형태는 주로 두 가지로 보고되고 있으며, 티타니아 격자를 구성하는 산소를 질소가 치환하는 경우와 티타니아 격자 사이에서 질소산화물의 형태로 위치하는 경우가 알려져 있다. 지금도 가시광선 영역에서 물분해를 할 수 있는 잠재력을 활용하려는 시도들은 지속적으로 나오고 있으며, 질소 도핑 티타니아의 향후 전망에 대해서도 살펴보았다.
Titania has become the most applicable material for photocatalytic application. Nevertheless, titania has the weak point in its wide band gap energy that is mainly activated by UV irradiation. There have been vast research challenges in order to make the wide band gap energy of titania narrow that could be activated in the presence of visible light. Various modifications of titania surface were popular because titania needs to change its surface to respond in visible light. Among the methodological approaches, N-doping to titania can be the alternative candidate because it is facile process and eco-friendly. The activated electron from valence band in N-doped TiO2 migrates to conduction band in the presence of visible light irradiation, which shows photocatalytic activity as well. In this study, focused on the evaluation of nitrogen state after N-doping through brief review. Arguments are still existed in nitrogen states and their different effects on photocatalytic activity. In particular, two nitrogen states are generally reported; substitutional and interstitial states. The research articles regarding N-doped TiO2 are continuously appearing because the potential application of water split in visible light is still fascinate. The future of N-doped TiO2 is also presented by referrals based on various literature.
References
Fujishima A, Honda K, Nature, 238, 37 (1972)
Asahi R, Morikawa T, Ohwaki T, Aoki K, Tage Y, Science, 293, 269 (2001)
Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44(12), 8269 (2005)
Silva CG, Juarez R, Marino T, Molinari R, Garcia H, J. Am. Chem. Soc., 133(3), 595 (2011)
Daghrir R, Drogui P, Robert D, Ind. Eng. Chem. Res., 52(10), 3581 (2013)
Asahi R, Morikawa T, Irie H, Ohwaki T, Chem. Rev., 144, 9824 (2014)
Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C, 25, 1 (2015)
Enger ED, Ross FC, Bailey DB, Concepts in Biology, 14th ed., pp.135-150, McGraw-Hill Companies Inc., New York (2009).
Lee SS, Kim HJ, Jung KT, Kim HS, Shul YG, Korean J. Chem. Eng., 18(6), 914 (2001)
Xiang Y, Wang X, Zhang X, Hou H, Dai K, Huang Q, Chen, Hao, J. Mater. Chem. A, 6, 153 (2018)
Jakob M, Levanon H, Nano Lett., 3(3), 353 (2003)
Tanaka A, Hashimoto K, Kominami H, Chem. Commun., 53, 4759 (2017)
Hwang DK, Shul YG, Oh K, Ind. Eng. Chem. Res., 52(50), 17907 (2013)
Nie J, Schneider J, Sieland F, Zhou L, Xia S, Bahnemann DW, RSC Adv., 8, 25881 (2018)
Wang H, Lewis JP, J. Phys. Condens. Matter, 18, 421 (2006)
Peng F, Cai L, Huang L, Yu H, Wang H, J. Phys. Chem. Solids, 69, 1657 (2008)
Tarasov A, Minnekhanov A, Trusov G, Konstantinova E, Zyubin A, Zyubina T, Sadovnikov A, Dobrovosky Y, Doodilin E, J. Phys. Chem C, 119, 18663 (2015)
Valentin CD, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E, Chem Phys., 339, 44 (2007)
Viswanathan B, Krishanmurthy KR, Int. J. Photoenergy, ID 269654(2012).
Lynch J, Giannini C, Cooper JK, Loiudice A, Sharp ID, Buonsanti R, J. Phys. Chem C, 119, 7443 (2015)
Peng F, Cai L, Yu H, Wang H, Yand J, J. Solid State Chem., 181, 130 (2008)
Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000 (2016)
Kamaei M, Rashedi H, Dastgheib SMM, Tasharofi S, Catalysts, 8, 466 (2018)
Ola O, Maroto-Valer MM, J. Photochem. Photobiol. C, 24, 16 (2015)
https://www.tus.ac.jp/en/initiatives/vol01/(accessed Dec. 24th 2018).
Asahi R, Morikawa T, Ohwaki T, Aoki K, Tage Y, Science, 293, 269 (2001)
Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44(12), 8269 (2005)
Silva CG, Juarez R, Marino T, Molinari R, Garcia H, J. Am. Chem. Soc., 133(3), 595 (2011)
Daghrir R, Drogui P, Robert D, Ind. Eng. Chem. Res., 52(10), 3581 (2013)
Asahi R, Morikawa T, Irie H, Ohwaki T, Chem. Rev., 144, 9824 (2014)
Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C, 25, 1 (2015)
Enger ED, Ross FC, Bailey DB, Concepts in Biology, 14th ed., pp.135-150, McGraw-Hill Companies Inc., New York (2009).
Lee SS, Kim HJ, Jung KT, Kim HS, Shul YG, Korean J. Chem. Eng., 18(6), 914 (2001)
Xiang Y, Wang X, Zhang X, Hou H, Dai K, Huang Q, Chen, Hao, J. Mater. Chem. A, 6, 153 (2018)
Jakob M, Levanon H, Nano Lett., 3(3), 353 (2003)
Tanaka A, Hashimoto K, Kominami H, Chem. Commun., 53, 4759 (2017)
Hwang DK, Shul YG, Oh K, Ind. Eng. Chem. Res., 52(50), 17907 (2013)
Nie J, Schneider J, Sieland F, Zhou L, Xia S, Bahnemann DW, RSC Adv., 8, 25881 (2018)
Wang H, Lewis JP, J. Phys. Condens. Matter, 18, 421 (2006)
Peng F, Cai L, Huang L, Yu H, Wang H, J. Phys. Chem. Solids, 69, 1657 (2008)
Tarasov A, Minnekhanov A, Trusov G, Konstantinova E, Zyubin A, Zyubina T, Sadovnikov A, Dobrovosky Y, Doodilin E, J. Phys. Chem C, 119, 18663 (2015)
Valentin CD, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E, Chem Phys., 339, 44 (2007)
Viswanathan B, Krishanmurthy KR, Int. J. Photoenergy, ID 269654(2012).
Lynch J, Giannini C, Cooper JK, Loiudice A, Sharp ID, Buonsanti R, J. Phys. Chem C, 119, 7443 (2015)
Peng F, Cai L, Yu H, Wang H, Yand J, J. Solid State Chem., 181, 130 (2008)
Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000 (2016)
Kamaei M, Rashedi H, Dastgheib SMM, Tasharofi S, Catalysts, 8, 466 (2018)
Ola O, Maroto-Valer MM, J. Photochem. Photobiol. C, 24, 16 (2015)
https://www.tus.ac.jp/en/initiatives/vol01/(accessed Dec. 24th 2018).