ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 19, 2019
Accepted April 2, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

활성탄과 제올라이트 13X에서 벤젠, 톨루엔 및 자일렌 증기의 흡착 및 확산 특성

Adsorption and Diffusion Characteristics of Benzene, Toluene, and Xylene Vapors on Activated Carbon and Zeolite 13X

홍익대학교 화학공학과, 04066 서울특별시 마포구 와우산로 94
Department of Chemical Engineering, Hong-Ik University, 94, Wowsan-ro, Mapo-gu, Soeul, 04066, Korea
suhss@hongik.ac.kr
Korean Chemical Engineering Research, June 2019, 57(3), 358-367(10), 10.9713/kcer.2019.57.3.358 Epub 3 June 2019
downloadDownload PDF

Abstract

본 연구에서는 활성탄과 제올라이트 13X에 대한 벤젠, 톨루엔 및 자일렌 증기의 기체 흡착평형과 입자내부의 확산 특성을 조사하였다. 압력 범위 0.01~0.07 bar 사이에서 흡착온도를 각각 293.15 K, 303.15 K, 313.15 K로 변화시키면서 정적흡착실험을 수행하였다. 흡착평형은 Langmuir, Freundlich 및 Toth 흡착등온식을 적용하여 해석하였다. 그 결과 표준편차는 Langmuir 식과 Toth 식에서 낮았으며, Freundlich 식에서 표준편차가 가장 컸다. Langmuir 상수를 Arrhenius 식의 형태로 표현하여 구한 흡착에너지는 5.26~31.0 kJ/mol 정도로 물리흡착의 특성을 나타냈다. 흡착제에 따른 흡착질의 최대 흡착량은 활성탄의 경우 벤젠, 톨루엔, 자일렌으로 갈수록 최대 흡착량이 감소했으며, 제올라이트 13X의 경우 활성탄과는 반대로 최대 흡착량이 자일렌에서 가장 크고 벤젠에서 가장 작게 나타났다. 벤젠, 톨루엔 및 자일렌 증기의 유효확산계수는 약 10-5~10-4 cm2/s 정도로 나타났으며, 압력이 증가함에 따라 값이 작아지고 온도가 증가함에 따라 값이 커지는 경향을 보였다. 온도와 압력의 변화에 따른 유효확산계수의 변화는 활성탄보다 제올라이트13X에서 민감하게 나타났다. 따라서 압력 변동이 급격하게 발생하는 흡착공정에서 제올라이트 13X를 사용할 경우 정밀한 동적거동 예측을 위해서는 확산계수를 압력에 대한 함수로 표현하는 것이 필요하다.
Adsorption equilibrium and intraparticle diffusion characteristics of benzene, toluene, and xylene vapors on activated carbon and zeolite 13X were investigated. Static adsorption experiments were carried out under the pressure range of 0.01~0.07 bar while changing the adsorption temperature to 293.15 K, 303.15 K, and 313.15 K, respectively. Adsorption equilibrium was analyzed by Langmuir, Freundlich and Toth models. The adsorption energy was 5.26~31.0 kJ/mol representing physical adsorption characteristics. The maximum adsorption capacity on activated carbon was the largest for benzene, and the smallest for xylene. Toluene was in between. In the case of zeolite 13X, the maximum adsorption capacity was the largest for xylene, and the smallest for benzene as opposed to activated carbon. The effective diffusion coefficients of gas adsorbate were measured to be about 10-5~10-4 cm2/s, and increased with temperature. As the pressure increased, the effective diffusion coefficients were decreased. The dependence of effective diffusion coefficients on temperature and pressure was greater in zeolite 13X particles than in activated carbon. Therefore, it is necessary to express the diffusion coefficients as a function of pressure in order to predict the precise dynamic behavior of the adsorption process using zeolite 13X where the pressure fluctuation occurs abruptly.

References

Jodehl S, Ahmad1 R, Suleiman1 M, Radi S, Khadija ME, Salghi R, Warad1 I, Hadda TB, J. Mater. Environ. Sci., 6(10), 2853 (2015)
Mehdi J, Seyed JS, Javad A, Alimrad R, Hossein K, Abbas RF, Mohammad RG, Amir G, Fresenius Environmental Bulletin, 20(4), 1036 (2011)
Lee JJ, Korean Chem. Eng. Res., 56(1), 112 (2018)
Lee CH, Kam SK, Lee MG, Korean Chem. Eng. Res., 55(6), 798 (2017)
Brihi TE, Jaubert JN, Barth D, Perrin L, Environ. Technol., 24, 1201 (2003)
He J, Hong S, Zhang L, Gan F, Ho YS, Fresenius Environmental Bulletin, 20(4), 1036 (2011)
Zabielska K, Alekxandrzak T, Gabrus E, Chemical and Process Engineering, 39(3), 309-321(2018).
Park HN, Choi HA, Won SW, Korean Chem. Eng. Res., 56(1), 96 (2018)
Stephan B, Manero MH, Floussard JN, Environ. Sci. Technol., 35(17), 3571 (2001)
Suzuki M, Kawazoe K, J. Chem. Eng. Jpn., 8(5), 379 (1975)
Djeridi W, Ouederni A, J. Chem. Eng. Process Technol., 5(1), 1 (2013)
Douglas MR, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, United States (1984).
Douglas MR, Shamsuzzaman F, Kent SK, Pressure Swing Adsorption, John Wiley & Sons, United States (1993).
Toth J, Adsorption: Theory, Modeling, and Analysis, CRC Press, New York (2002).
Crank J, The Mathematics of Diffusion, 2nd ed, Clarendon Press, United States (1975).
Alan LM, Diego PV, Adsorption Equilibrium Data Handbook, Prentice Hall, New Jersey (1989).
Im JS, Park SJ, Kim TJ, Kim YH, Lee YS, J. Colloid Interface Sci., 318, 42 (2008)
Wang CM, Chang KS, Chung TW, Wu HD, J. Chem. Eng. Data, 49(3), 527 (2004)
Nollet H, Roels M, Lutgen PV, Meeren P, Verstraete W, Chemosphere, 53, 655 (2003)
Pei J, Zhang JS, Building Simulation, 3(1), 75 (2010)
Steele WA, Zgrablich G, Rudzinski W, Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces, Elsevier Science, Amsterdam (1997).
Chou SH, Wong DS, Tan CS, Ind. Eng. Chem. Res., 36(12), 5501 (1997)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로