Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 6, 2018
Accepted April 10, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch
Department of Wood Science and Engineering, College of Agriculture & Life Sciences, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Korea 1Power Generation Laboratory, Fuel & Combustion Group, KEPCO Research Institute, 105, Munji-ro, Yuseong-gu, Daejeon, 34065, Korea
ljw43376@chonnam.ac.kr
Korean Chemical Engineering Research, June 2019, 57(3), 372-377(6), 10.9713/kcer.2019.57.3.372 Epub 3 June 2019
Download PDF
Abstract
Leaching (60 °C, 5 min) and wet torrefaction (200 °C, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.
References
KESIS, Korea Energy Statistics Information System. Ulsan, Korea (2018).
Deng L, Zhang T, Che DF, Fuel Process. Technol., 106, 712 (2013)
Nielsen HP, Baxter LL, Sclippab G, Morey C, Frandsen FJ, Dam-Johansen K, Fuel, 79(2), 131 (2000)
Ma T, Fan CG, Hao LF, Li SG, Song WL, Lin WG, Thermochim. Acta, 638, 1 (2016)
Smith AM, Singh S, Ross AB, Fuel, 169, 135 (2016)
Bach QV, Skreiberg O, J. Renew. Sustain. Energy, 54, 665 (2016)
Chin KL, H'ng PS, Paridah MT, Szymona K, Maminski M, Lee SH, Lum WC, Nurliyana MY, Chow MJ, Go WZ, Energy, 90, 622 (2015)
Persson H, Kantarelis E, Evangelopoulos P, Yang W, J. Anal. Appl. Pyrolysis, 127, 329 (2017)
Zhang SP, Su YH, Xu D, Zhu SG, Zhang HL, Liu XZ, Energy, 149, 804 (2018)
Yu C, Thy P, Wang L, Anderson SN, VanderGheynst JS, Upadhyaya SK, Jenkins BM, Fuel Process. Technol., 128, 43 (2014)
Zheng A, Zhao Z, Chang S, Huang Z, Zhao K, Wei G, Li H, Biomass Bioenergy, 176, 15 (2015)
Na B, Kim Y, Lim W, Lee S, Lee H, Lee J, Biomass Bioenergy, 52, 159 (2013)
Ho SH, Zhang CY, Chen WH, Shen Y, Chang JS, Bioresour. Technol., 264, 7 (2018)
Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR, Bioresour. Technol., 102(10), 6192 (2011)
Lee SM, Lee JW, Bioresour. Technol., 172, 438 (2014)
Kambo HS, Dutta A, Energy Conv. Manag., 105, 746 (2015)
Sluiter A, Hames B, Ruiz R, Scarlate C, Sluiter J, Templeton D, Crocker D, “Laboratory Analytical Procedure No. TP-510-42618,” NREL, Goden, CO(2012).
Saddawi A, Jones JM, Williams A, Le Coeur C, Energy Fuels, 26(11), 6466 (2012)
Thy P, Grundvig S, Jenkins BM, Shiraki R, Lesher CE, Energy Fuels, 19(6), 2571 (2005)
Tonn B, Thumm U, Lewandowski I, Claupein W, Biomass Bioenerg., 36, 390 (2012)
Supancic K, Obernberger I, Kienzl N, Arich A, Biomass Bioenerg., 61, 211 (2014)
Novianti S, Nurdiawati A, Zaini IN, Prawisudha P, Sumida H, Yoshikawa K, Energy Procedia, 75, 584 (2015)
Nurdiawati A, Novianti S, Zaini IN, Nakhshinieva B, Sumida H, Takahashi F, Yoshikawa K, Energy Procedia, 79, 226 (2015)
Makela M, Fullana A, Yoshikawa K, Energy Conv. Manag., 121, 402 (2016)
Deng L, Zhang T, Che DF, Fuel Process. Technol., 106, 712 (2013)
Nielsen HP, Baxter LL, Sclippab G, Morey C, Frandsen FJ, Dam-Johansen K, Fuel, 79(2), 131 (2000)
Ma T, Fan CG, Hao LF, Li SG, Song WL, Lin WG, Thermochim. Acta, 638, 1 (2016)
Smith AM, Singh S, Ross AB, Fuel, 169, 135 (2016)
Bach QV, Skreiberg O, J. Renew. Sustain. Energy, 54, 665 (2016)
Chin KL, H'ng PS, Paridah MT, Szymona K, Maminski M, Lee SH, Lum WC, Nurliyana MY, Chow MJ, Go WZ, Energy, 90, 622 (2015)
Persson H, Kantarelis E, Evangelopoulos P, Yang W, J. Anal. Appl. Pyrolysis, 127, 329 (2017)
Zhang SP, Su YH, Xu D, Zhu SG, Zhang HL, Liu XZ, Energy, 149, 804 (2018)
Yu C, Thy P, Wang L, Anderson SN, VanderGheynst JS, Upadhyaya SK, Jenkins BM, Fuel Process. Technol., 128, 43 (2014)
Zheng A, Zhao Z, Chang S, Huang Z, Zhao K, Wei G, Li H, Biomass Bioenergy, 176, 15 (2015)
Na B, Kim Y, Lim W, Lee S, Lee H, Lee J, Biomass Bioenergy, 52, 159 (2013)
Ho SH, Zhang CY, Chen WH, Shen Y, Chang JS, Bioresour. Technol., 264, 7 (2018)
Lynam JG, Coronella CJ, Yan W, Reza MT, Vasquez VR, Bioresour. Technol., 102(10), 6192 (2011)
Lee SM, Lee JW, Bioresour. Technol., 172, 438 (2014)
Kambo HS, Dutta A, Energy Conv. Manag., 105, 746 (2015)
Sluiter A, Hames B, Ruiz R, Scarlate C, Sluiter J, Templeton D, Crocker D, “Laboratory Analytical Procedure No. TP-510-42618,” NREL, Goden, CO(2012).
Saddawi A, Jones JM, Williams A, Le Coeur C, Energy Fuels, 26(11), 6466 (2012)
Thy P, Grundvig S, Jenkins BM, Shiraki R, Lesher CE, Energy Fuels, 19(6), 2571 (2005)
Tonn B, Thumm U, Lewandowski I, Claupein W, Biomass Bioenerg., 36, 390 (2012)
Supancic K, Obernberger I, Kienzl N, Arich A, Biomass Bioenerg., 61, 211 (2014)
Novianti S, Nurdiawati A, Zaini IN, Prawisudha P, Sumida H, Yoshikawa K, Energy Procedia, 75, 584 (2015)
Nurdiawati A, Novianti S, Zaini IN, Nakhshinieva B, Sumida H, Takahashi F, Yoshikawa K, Energy Procedia, 79, 226 (2015)
Makela M, Fullana A, Yoshikawa K, Energy Conv. Manag., 121, 402 (2016)