ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 13, 2019
Accepted March 22, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

100 kWth 급 순환유동층 시스템에서 무연탄 순산소연소 특성 연구

Oxy Combustion Characteristics of Anthracite in a 100 kWth Circulating Fluidized Bed System

1한국에너지기술연구원 FEP 융합연구단, 34129 대전광역시 유성구 가정로 152 2한국에너지기술연구원 기후변화연구본부, 34129 대전광역시 유성구 가정로 152 3군산대학교 화학공학과, 54151 전라북도 군산시 대학로 558 4과학기술연합대학원대학교 신에너지 및 시스템공학, 34129 대전광역시 유성구 가정로 152
1Future Energy Plant (FEP) Convergence Research Center, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea 2Climate Change Research Division, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129, Korea 3Chemical Engineering Department, Kunsan National University, Daehak-ro, Kunsan-si, Jeonbuk ,54154, Korea 4Advanced Energy and System Engineering, University of Science and Technology, 152, Gajeong-ro, Yuseong-gu, Daejeon, 34129 Korea
Korean Chemical Engineering Research, June 2019, 57(3), 400-407(8), 10.9713/kcer.2019.57.3.400 Epub 3 June 2019
downloadDownload PDF

Abstract

순산소 순환유동층 연소기술은 기후변화 및 연료 수급 문제들을 해결할 수 있는 기술로 주목 받고 있다. 순산소 순환유동층 연소기술은 배기가스 재순환 공정을 통해 이산화탄소를 비교적 쉽게 포집할 수 있으며 대기오염물질 배출도 줄일 수 있는 친환경 연소기술이다. 새롭게 개발된 100 kWth 급 순산소 순환유동층 연소 시스템은 연료다변화에 대응하기 위해 다양한 연료들의 순산소연소 특성을 분석하고 있으며, 본 연구에서는 높은 고정탄소 및 회분함량으로 인해 연소성이 낮은 연료로 알려진 무연탄을 활용하여 높은 이산화탄소를 생산하고 연소효율을 향상시키고자 하였다. 그 결과로서, 무연탄 순산소 연소는 아역청탄 공기연소 대비, 연소효율이 2% 향상되었으며 대기오염물질인 SO2, CO, NO은 각각 15%, 60%, 99% 감소하였다. 또한, 안정적인 순산소 순환유동층 연소를 통해 배기가스 내 94 vol.% 이상의 CO2가 포집될 수 있음을 확인하였다.
Oxy-combustion with a circulating fluidized bed (Oxy-CFBC) technology has been paid attention to cope with the climate change and fuel supply problem. In addition, Oxy-CFBC technology as one of the methods for carbon dioxide capture is an eco-friendly that can reduce air pollutants, such as SO2, NO and CO through a flue gas recirculation process. The newly developed 100 kWth pilot-scale Oxy-CFBC system used for this research has been continuously utilizing to investigate oxy-combustion characteristics for various fuels, coals and biomasses to verify the possibility of fuel diversification. The anthracite is known as a low reactivity fuel due to a lot of fixed carbon and ash. Therefore, this study aims not only to improve combustion efficiency of an anthracite, but also to capture carbon dioxide. As a result, compared to air-combustion of sub-bituminous coal, oxy-combustion of anthracite could improve 2% combustion efficiency and emissions of SO2, CO and NO were reduced 15%, 60% and 99%, respectively. In addition, stable operating of Oxy-CFBC could capture above 94 vol.% CO2.

References

Barnes I, IEA Clean Coal Centre(2015).
Lockwood T, IEA Clean Coal Centre, CCC/226 ISBN 978-92-9029-546-4(2013).
Cai R, Ke X, Lyu J, Yang H, Zhang M, Yue G, Limg W, Clean Energy, 1, 36 (2017)
Lee JM, Kim DW, Kim JS, Na JG, Lee SH, Energy, 35(7), 2814 (2010)
Kim DW, Lee JM, Kim JS, Kim JJ, Korean J. Chem. Eng., 24(3), 461 (2007)
Gonzalez-Salazar MA, Int. J. Greenh. Gas Con., 34, 106 (2015)
Lopez R, Menendez M, Fernandez C, Bernardo-Sanchez A, Energy, 148, 571 (2018)
Hnydiuk-Stefan A, Skladzien J, Energy, 128, 271 (2017)
Habib MA, Nemitallah M, Ben-Mansour R, Energy Fuels, 27(1), 2 (2013)
Weng M, Gunther C, Kather A, Energy Procedia, 37, 1480 (2013)
Hu YQ, Kobayashi N, Hasatani M, Fuel, 80(13), 1851 (2001)
Duan L, Zhao C, Zhou W, Qu C, Chen X, Int. J. Greenh. Gas Con., 5(4), 770 (2011)
Lasek JA, Janusz M, Zuwala J, Glod K, Iluk A, Energy, 62, 105 (2013)
Riaza J, Gil MV, Alvarez L, Pevida C, Pis JJ, Rubiera F, Energy, 41(1), 429 (2012)
Supranov VM, Ryabov GA, Mel’Nikov DA, Therm. Eng., 58, 593 (2011)
Li H, Li S, Ren Q, Li W, Xu M, Liu JZ, Lu Q, Energy Procedia, 63, 362 (2014)
Silvestre LS, Nsakala N, Scott LD, Energy Procedia, 1, 543 (2009)
Leckner B, Gomez-Barea A, Appl. Energy, 125, 308 (2014)
Mathekga H. I., Oboirien B. O., North B. C., Int. J. Energy Res., 40(7), 878 (2016)
Moon JH, Jo SH, Park SJ, Khoi NH, Seo MW, Ra HW, Yoon SJ, Yoon SM, Lee JG, Mun TY, Energy, 166, 183 (2019)
Won YS, Jeong AR, Choi JH, Jo SH, Ryu HJ, Yi CK, Korean J. Chem. Eng., 34(3), 913 (2017)
Han KH, Hyun JS, Choi WK, Lee JS, Korean Chem. Eng. Res., 47(5), 580 (2009)
Lee SH, Lee JM, Kim JS, Choi JH, Kim SD, Korean J. Chem. Eng., 38(4), 516 (2000)
Ziebik A, Gladysz P, Energy, 88, 37 (2015)
Jin B, Zhao HB, Zheng CG, Energy, 83, 416 (2015)
Shun DW, Bae DH, Han KH, Son JE, Kang Y, Wee YH, Lee JS, Ji PS, Korean J. Chem. Eng., 34(3), 321 (1996)
Lee JM, Kim JS, Lee EM, J. Korean Soc. Combust., 10(3), 1 (2005)
Al-Makhadmeh L, Ph.D. thesis, University of Stuttgart, Shaker Verlag Aachen(2009).
Wall T, Liu YH, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng CD, Gupta R, Yamada T, Makino K, Yu JL, Chem. Eng. Res. Des., 87(8A), 1003 (2009)
Seddighi S, Energy, 118, 1286 (2017)
Li YH, Chen GB, Wu FH, Hsieh HF, Chao YC, Energy, 94, 766 (2016)
Winter F, Wartha C, Loffler G, Hofbauer H, Twenty-Sixth Symposium (International) on Combustion, 26(2), 3325-3334(1996).
Basu P, Cen KF, Jestin L, “Boilers and Burners,” New York, Springer(2000).
Gungor A, Fuel, 87(7), 1083 (2008)
Gyul’maliev AM, Shpirt MY, Solid Fuel Chem., 42(5), 263 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로