ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 6, 2019
Accepted April 3, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

1School of chemistry, University of St Andrews, Fife, KY16 9ST, United Kingdom, UK 2Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Korea 3Research Institute of Sustainable Manufacturing System, Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si, Chungcheongnam-do, 31056, Korea
Korean Chemical Engineering Research, June 2019, 57(3), 425-431(7), 10.9713/kcer.2019.57.3.425 Epub 3 June 2019
downloadDownload PDF

Abstract

As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of LaCrO3, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to Bsite of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the microtubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the LaCr0.8Ru0.1Ni0.1O3 micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

References

Blurton KF, Sammells AF, J. Power Sources, 4, 263 (1979)
Zhang X, Wang XG, Xie Z, Zhou Z, Green Energy Environment, 1, 4 (2016)
Li Y, Lu J, ACS Energy Lett., 2(6), 1370 (2017)
Wang ZL, Xu D, Xu JJ, Zhang XB, Chem. Soc. Rev., 43, 7746 (2014)
Cheng F, Chen J, Chem. Soc. Rev., 41, 2172 (2012)
Li Y, Gong M, Liang Y, Feng J, Kim J, Wang H, Hong G, Zhang B, Dai H, Nat. Comm., 4, 1805 (2013)
Grande L, Paillard E, Hassoun J, Park JB, Lee YJ, Sun YK, Passerini S, Scrosati B, Adv. Mater., 27(5), 784 (2015)
Jung HG, Hassoun J, Park JB, Sun YK, Scrosati B, Nat. Chem., 4, 579 (2012)
Lee JS, Kim ST, Cao R, Choi NS, Liu M, et al., Adv. Eng. Mater., 1, 34 (2012)
Caramia V, Bozzini B, Materials for Renewable and Sustainable Energy, 3, 28(2014).
Hwang HJ, Chi WS, Kwon O, Lee JG, Kim JH, Shul YG, ACS Appl. Mater. Interfaces, 8(39), 26298 (2016)
Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X, Green Energy Environment, 2, 246 (2017)
Kwon O, Hwang HJ, Ji Y, Jeon OS, Kim JP, Lee C, Shul YG, Sci. Rep., 9, 3175 (2019)
Liu Q, Chang Z, Li Z, Zhang X, Small Methods, 2, 170023 (2018)
Zhang T, Zhou H, Nat. Comm., 4, 1817 (2013)
Mainar AR, Iruin E, Colmenares LC, Kvasha A, Meatza I, Bengoechea M, Leonet O, Boyano I, Zhang Z, Blazquez JA, J. Energy Storage, 15, 304 (2018)
Balaish M, Kraytsberg A, Ein-Eli Y, Phys. Chem. Chem. Phys., 16, 2801 (2014)
Gelman D, Shvartsev B, Ein-Eli Y, J. Mater. Chem. A, 2, 20237 (2014)
Wang ZL, Xu D, Xu JJ, Zhang XB, Chem. Soc. Rev., 43, 7746 (2014)
Li Y, Gong M, Liang Y, Feng J, Kim JE, Wang H, Hong G, Zhang B, Dai H, Nat. Comm., 4, 1805 (2013)
Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong WC, et al., Nat. Comm., 9, 5422 (2018)
Chen Z, Yu A, Higgins D, Li H, Wang H, Chen Z, Nano Lett., 12, 1946 (2012)
Jung KN, Hwang SM, Park MS, Kim KJ, Kim JG, Dou SX, Kim JH, Lee JW, Sci. Rep., 5, 7665 (2014)
Miao H, Wang ZH, Wang Q, Sun SS, Xue YJ, Wang F, Zhao JP, Liu ZP, Yuan JL, Energy, 154, 561 (2018)
Li Y, Xu H, Chien PH, Wu N, Xin S, Xue L, Park K, Hu YY, Goodenough JB, Angew. Chem.-Int. Edit., 57, 8587 (2018)
Anderson HU, Kuo JH, Sparlin DM, Proceedings of the Electrochemical Society, PV 1989-19, 3-14(1989).
Pena MA, Fierro JLG, Chem. Rev., 101(7), 1981 (2001)
Voorhoeve RJH, Johnson DW, Remeika JP, Gallagher PK, Science, 4, 827 (1977)
Karatzas X, Dawody J, Grant A, Svensson EE, Pettersson LJ, Appl. Catal. B: Environ., 101(3-4), 226 (2011)
Chervin CN, Long JW, Brandell NL, Wallace JM, Kucko NW, Rolison DR, J. Power Sources, 207, 191 (2012)
Jeon Y, Park DH, Park JI, Yoon SH, Mochida I, Choy JH, Shul YG, Sci. Rep., 3, 2902 (2013)
Jeon Y, Lee C, Rhee J, Lee G, Myung JH, Park M, Park JI, Einaga H, Shul YG, Fuel, 187, 446 (2017)
Jeon Y, Myung JH, Hyun SH, Shul YG, Irvine JTS, J. Mater. Chem. A, 5, 3966 (2017)
Jeon Y, Ji Y, Cho YI, Lee C, Park DH, Shul YG, ACS Nano, 12, 6819 (2018)
Sunarso J, Torriero AAJ, Zhou W, Howlett PC, Forsyth M, J. Phys. Chem. C, 116, 5827 (2012)
Cazaux J, J. Electron Spectrosc. Relat. Phenom., 105, 155 (1999)
Palina N, Wang L, Dash S, Yu X, Breese MBH, Wang J, Rusydi A, Nanoscale, 9, 6094 (2017)
Gilbert B, Andres R, Perfetti P, Margaritondo G, Rempfer G, de Stasio G, Ultramicroscopy, 83, 129 (2000)
Harano T, Shibata G, Ishigami K, Takashashi Y, Verma VK, Singh VR, et al., Appl. Phys. Lett., 102, 222404 (2013)
Masuda Y, Hosokawa S, Inoue M, J. Ceram. Soc. Jpn., 119, 850 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로