Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 5, 2019
Accepted March 23, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
유연전극을 이용한 대기압 부유전극 유전체 장벽 방전 플라즈마
Atmospheric Pressure Floating Electrode-Dielectric Barrier Discharges (FE-DBDs) Having Flexible Electrodes
아주대학교 나노정보기술융합연구소, 16499 경기도 수원시 영통구 월드컵로 206 1아주대학교 화학공학과, 에너지시스템학과, 16499 경기도 수원시 영통구 월드컵로 206
Institute of NT-IT Fusing Technology, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Korea 1Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Korea
changkoo@ajou.ac.kr
Korean Chemical Engineering Research, June 2019, 57(3), 432-437(6), 10.9713/kcer.2019.57.3.432 Epub 3 June 2019
Download PDF
Abstract
유연전극 기반의 대기압 부유전극 유전체 장벽 방전 (floating electrode-dielectric barrier discharge, FE-DBD) 시스템을 개발하여 플라즈마 특성을 분석하였다. 유연한 파워전극(powered electrode)을 구성하는 유연유전체로 polytetrafluoroethylene (PTFE), polydiemethylsiloxane (PDMS), polyethylene terephthalate (PET)를 사용하여 플라즈마를 발생하였을 때 플라즈마의 광학적 세기와 전자온도는 파워전극에 인가하는 전압이 증가할수록 증가하였고, 전압이 일정할 때는 PTFE < PDMS < PET 순으로 증가하였다. 이는 유전체의 종류와 전압에 따른 축전용량의 변화로 설명 할 수 있었고, 유연전극 기반의 대기압 FE-DBD 플라즈마의 특성은 유연한 파워전극을 구성하는 유전체와 파워전극에 인가되는 전압을 변화함으로써 조절될 수 있음을 의미한다. 유연전극 대기압 FE-DBD 시스템은 피부 곡면을 따라 플라즈마가 발생될 수 있으므로 플라즈마 메디신(plasma medicine)에 유용할 것으로 기대한다.
An atmospheric pressure floating electrode-dielectric barrier discharge (FE-DBD) system having flexible electrodes was developed and its plasma characteristics was investigated. Polytetrafluoroethylene (PTFE), polydiemethylsiloxane (PDMS), and polyethylene terephthalate (PET) were used as flexible dielectrics for flexible powered-electrodes. The optical intensity and electron temperature of the atmospheric pressure FE-DBD plasma increased with the voltage applied to the powered electrode, and increased in the order of PTFE < PDMS < PET at a fixed voltage. This behavior was explained in terms of the change in the capacitance of the flexible dielectrics with the dielectric type and voltage, implying that the plasma characteristics of an atmospheric pressure FE-DBD having flexible electrodes can be controlled by modulating the flexible dielectrics for the flexible powered-electrode and the voltage applied to the powered electrode. Because an atmospheric pressure FE-DBD system can generate a plasma along the curvature of skins, it is expected to have useful applications in plasma medicine.
Keywords
References
Schaepkens M, Oehrlein GS, Hedlund C, Jonsson LB, Blom HO, J. Vac. Sci. Technol. A, 16(6), 3281 (1998)
Kim JH, Cho SW, Park CJ, Chae H, Kim CK, Thin Solid Films, 637, 43 (2017)
Cho SW, Kim CK, Lee JK, Moon SH, Chae HJ, Vac. Sci. Technol. A, 30, 051301-1-051301-6(2012).
Lee TH, Lim BR, Yong KJ, Kwon WS, Park MW, Korean J. Chem. Eng., 34(9), 2502 (2017)
Ji SH, Jang WS, Son JW, Kim DH, Korean J. Chem. Eng., 35(12), 2474 (2018)
Choi JH, Kim SJ, Kim HT, Cho SM, Korean J. Chem. Eng., 35(6), 1348 (2018)
Fridman G, Friedman G, Gutsol A. Shekhter AB, Vasilets VN, Fridman A, Plasma Process. Polym., 5, 503 (2008)
Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD, J. Phys. D: Appl. Phys., 44, 013002-1-013002-18(2011).
Graves DB, J. Phys. D: Appl. Phys., 45, 206330-1-263001-42(2012).
Xiong Z, Roe J, Grammer TC, Graves DB, Plasma Process. Polym., 13, 588 (2016)
Weltmann KD,von Woedtke T, Plasma Phys. Control. Fusion, 59, 014031-1-014031-11(2017).
Kolb JF, Mohamed AA, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH, Appl. Phys. Lett., 92, 241501-1-241501-3(2008).
Lu XP, Jiang ZH, Xiong Q, Tang ZY, Pan Y, Appl. Phys. Lett., 92, 151504-1-151504-3(2008).
Lee HW, Nam SH, Mohamed AH, Kim GC, Lee JK, Plasma Process. Polym., 7, 274 (2010)
Kogelschatz U, Plasma Chem. Plasma Process., 23(1), 1 (2003)
Pavlovich MJ, Chen Z, Sakiyama Y, Clark DS, Graves DB, Plasma Process. Polym., 10, 69 (2013)
Pei X, Liu J, Xian Y, Lu X, J. Phys. D: Appl. Phys., 47, 145204-1145204-6(2014).
Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G, Plasma Chem. Plasma Process., 26(4), 425 (2006)
Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G, Plasma Chem. Plasma Process., 27(2), 163 (2007)
Babaeva NY, Kushner MJ, J. Phys. D: Appl. Phys., 43, 185206-1-185206-12(2010).
Walsh JL, Liu DX, Iza F, Rong MZ, Kong MG, J. Phys. D: Appl. Phys., 43, 032001-1-032001-7(2010).
Baroch P, Saito N, Takai O, J. Phys. D: Appl. Phys., 41, 085207-1-085207-6(2008).
Ozkan A, Dufour T, Bogaerts A, Reniers F, Plasma Sources Sci. Technol. 25, 045016-1-045016-11(2016).
Valdivia-Barrientos R, Pacheco-Sotelo J, Pacheco-Pacheco M, Benitez-Read JS, Lopez-Callejas R, Plasma Sources Sci. Technol., 15, 237 (2006)
Bose D, Rauf S, Hash DB, Govindan TR, Meyyappan M, J. Vac. Sci. Technol. A, 22(6), 2290 (2004)
Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y, Thin Solid Films, 435(1-2), 259 (2003)
Ohno N, Razzak MA, Ukai H, Takamura S, Uesugi Y, Plasma Fusion Research, 1, 028-1-028-9(2006).
Xiao D, Cheng C, Shen J, Lan Y, Xe H, Shu X, Meng Y, Li J, Chu PK, J. Appl. Phys., 115, 033303-1-033303-10(2014).
http://physics.nist.gov/PhysRefData/ASD/index.html.
Camacho JJ, Poyato JML, Diaz L, Santos M, J. Phys. B: At. Mol. Phys., 40, 4573 (2007)
Kim JH, Choi YH, Hwang YS, Physics of Plasmas, 13, 093501-1-093501-7(2006).
Hong Y, Niu J, Pan J, Bi Z, Ni W, Liu D, Li J, Wu Y, Vacuum, 130, 130 (2016)
Mangolini L, Anderson C, Heberlein J, Kortshagen U, J. Phys. D-Appl. Phys., 37, 1021 (2004)
Kim JH, Cho SW, Park CJ, Chae H, Kim CK, Thin Solid Films, 637, 43 (2017)
Cho SW, Kim CK, Lee JK, Moon SH, Chae HJ, Vac. Sci. Technol. A, 30, 051301-1-051301-6(2012).
Lee TH, Lim BR, Yong KJ, Kwon WS, Park MW, Korean J. Chem. Eng., 34(9), 2502 (2017)
Ji SH, Jang WS, Son JW, Kim DH, Korean J. Chem. Eng., 35(12), 2474 (2018)
Choi JH, Kim SJ, Kim HT, Cho SM, Korean J. Chem. Eng., 35(6), 1348 (2018)
Fridman G, Friedman G, Gutsol A. Shekhter AB, Vasilets VN, Fridman A, Plasma Process. Polym., 5, 503 (2008)
Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD, J. Phys. D: Appl. Phys., 44, 013002-1-013002-18(2011).
Graves DB, J. Phys. D: Appl. Phys., 45, 206330-1-263001-42(2012).
Xiong Z, Roe J, Grammer TC, Graves DB, Plasma Process. Polym., 13, 588 (2016)
Weltmann KD,von Woedtke T, Plasma Phys. Control. Fusion, 59, 014031-1-014031-11(2017).
Kolb JF, Mohamed AA, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH, Appl. Phys. Lett., 92, 241501-1-241501-3(2008).
Lu XP, Jiang ZH, Xiong Q, Tang ZY, Pan Y, Appl. Phys. Lett., 92, 151504-1-151504-3(2008).
Lee HW, Nam SH, Mohamed AH, Kim GC, Lee JK, Plasma Process. Polym., 7, 274 (2010)
Kogelschatz U, Plasma Chem. Plasma Process., 23(1), 1 (2003)
Pavlovich MJ, Chen Z, Sakiyama Y, Clark DS, Graves DB, Plasma Process. Polym., 10, 69 (2013)
Pei X, Liu J, Xian Y, Lu X, J. Phys. D: Appl. Phys., 47, 145204-1145204-6(2014).
Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G, Plasma Chem. Plasma Process., 26(4), 425 (2006)
Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G, Plasma Chem. Plasma Process., 27(2), 163 (2007)
Babaeva NY, Kushner MJ, J. Phys. D: Appl. Phys., 43, 185206-1-185206-12(2010).
Walsh JL, Liu DX, Iza F, Rong MZ, Kong MG, J. Phys. D: Appl. Phys., 43, 032001-1-032001-7(2010).
Baroch P, Saito N, Takai O, J. Phys. D: Appl. Phys., 41, 085207-1-085207-6(2008).
Ozkan A, Dufour T, Bogaerts A, Reniers F, Plasma Sources Sci. Technol. 25, 045016-1-045016-11(2016).
Valdivia-Barrientos R, Pacheco-Sotelo J, Pacheco-Pacheco M, Benitez-Read JS, Lopez-Callejas R, Plasma Sources Sci. Technol., 15, 237 (2006)
Bose D, Rauf S, Hash DB, Govindan TR, Meyyappan M, J. Vac. Sci. Technol. A, 22(6), 2290 (2004)
Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y, Thin Solid Films, 435(1-2), 259 (2003)
Ohno N, Razzak MA, Ukai H, Takamura S, Uesugi Y, Plasma Fusion Research, 1, 028-1-028-9(2006).
Xiao D, Cheng C, Shen J, Lan Y, Xe H, Shu X, Meng Y, Li J, Chu PK, J. Appl. Phys., 115, 033303-1-033303-10(2014).
http://physics.nist.gov/PhysRefData/ASD/index.html.
Camacho JJ, Poyato JML, Diaz L, Santos M, J. Phys. B: At. Mol. Phys., 40, 4573 (2007)
Kim JH, Choi YH, Hwang YS, Physics of Plasmas, 13, 093501-1-093501-7(2006).
Hong Y, Niu J, Pan J, Bi Z, Ni W, Liu D, Li J, Wu Y, Vacuum, 130, 130 (2016)
Mangolini L, Anderson C, Heberlein J, Kortshagen U, J. Phys. D-Appl. Phys., 37, 1021 (2004)