Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 4, 2018
Accepted March 27, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
과산화수소를 이용한 Pt계 촉매의 인산 이온 피독 특성 정량 평가 방법
The Measurement Method Using Hydrogen Peroxide for Quantification of Phosphate Ion Poisoning of Pt Based Catalyst
서울과학기술대학교 에너지환경대학원, 01811 서울특별시 노원구 공릉로 232 1한국교통대학교 화공신소재고분자공학부 화공생물공학전공, 27469 충청북도 충주시 대소원면 대학로 50
Grad. School of Energy and Environment, Seoul National Univ. of Science and Technology, 232, Gongreung-ro, Nowon-gu, Seoul, 01811, Korea 1Department of Chemical and Biological Engineering, Korea National Univ. of Transportation, 50, Daehak-ro, Daesowon-myeon, Chungju-si, Chungcheongbuk-do, 27469, Korea
Korean Chemical Engineering Research, June 2019, 57(3), 438-443(6), 10.9713/kcer.2019.57.3.438 Epub 3 June 2019
Download PDF
Abstract
본 연구에서는 HT-PEMFC 공기극용 Pt계열 연료극 촉매의 인산이온 피독 특성에 대한 새로운 평가 방법을 제시하였다. 이를 위하여, 기존의 전기화학적 인산이온 피독 측정법인 CV와 ORR RDE 측정법이 갖고 있는 문제점을 저감하기 위하여, 과산화수소를 Pt 촉매와의 반응물로 이용하여 고농도 인산 이온 분위기에서의 내피독성 측정값 오차를 감소시켰다. 그 결과 인산이온 농도 0.1M 이하의 저농도와 0.5M 이상의 고농도에서 인산농도 대비 전류밀도의 변화가 직선적으로 나타나, 실제 HT-PEMFC의 구동 환경과 유사한 고농도의 인산이온 분위기에서의 Pt계 인산이온 피독 정량화에 대하여 기존의 측정방법에 비해 우수함을 확인하였다.
A new measurement method is suggested to quantify the phosphate poisoning of cathodic Pt catalyst for HT-PEMFC. To do that, hydrogen peroxide was used as an indicator to reduce the error which has been occurred in conventional electrochemical measurement such as CV or ORR RDE with high concentration of phosphate ions. As a result, the current density induced from the reaction of hydrogen peroxide decomposition increased proportionally to the concentration of phosphate ion while the conventional methods show has a significant error with high concentration of phosphate ion. Thus, it is confirmed that the suggested way is superior to the conventional measurement method for the quantification of phosphate ion poisoning in an atmosphere similar to the actual operation condition of HT-PEMFC.
References
He Q, Yang X, Chen W, Mukerjee S, Koel B, Chen S, Phys. Chem. Chem. Phys., 12, 12544 (2010)
Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264 (2013)
Kaserer S, Caldwell KM, Ramaker DE, Roth C, J. Phys. Chem. C, 117, 6210 (2013)
He Q, Shyam B, Nishijima M, Ramaker D, Mukerjee S, J. Phys. Chem. C, 117, 4877 (2013)
Park H, Lim D, Yoo SJ, Kim H, Henkensmeier D, Kim JY, Ham HC, Jang JH, Sci. Rep., 7, 7186 (2017)
Hsueh KL, Gonzalez ER, Srinivasan S, J. Electronchem. Soc, 131(4), 823 (1984)
Park J, Yang S, Chung Y, Kwon Y, Trans. of Korean Hydrogen and New Energy Society, 28(6), 669-674 (2017).
Nart FC, Iwasita T, Electrochim. Acta, 37(3), 385 (1992)
Yang G, Chen Y, Zhou Y, Tang Y, Lu T, Electrochem. Commun., 12, 492 (2010)
Sun HJ, Xu JF, Fu GT, Mao XB, Zhang L, Chen Y, Zhou YM, Lu TH, Tang YW, Electrochim. Acta, 59, 279 (2012)
Oono Y, Sounai A, Hori M, J. Power Sources, 189(2), 943 (2009)
Kadiri FE, Faure R, Durand R, J. Electroanal. Chem., 301, 177 (1991)
Conway BE, Novak DM, J. Electrochem. Soc., 128(5), 956 (1981)
Deng YJ, Wiberg GKH, Zana A, Arenz M, Electrochim. Acta, 204, 78 (2016)
Hall SB, Khudaish EA, Hart AL, Electrochim. Acta, 44(25), 4573 (1999)
Atsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJJ, Phts. Chem. Chem. Phys., 14, 7384 (2012)
Gomez-Marin AM, Rizo R, Feliu JM, Beilstein J. Nanotechnol., 4, 956 (2013)
Chandan A, Hattenberger M, El-Kharouf A, Du SF, Dhir A, Self V, Pollet BG, Ingram A, Bujalski W, J. Power Sources, 231, 264 (2013)
Kaserer S, Caldwell KM, Ramaker DE, Roth C, J. Phys. Chem. C, 117, 6210 (2013)
He Q, Shyam B, Nishijima M, Ramaker D, Mukerjee S, J. Phys. Chem. C, 117, 4877 (2013)
Park H, Lim D, Yoo SJ, Kim H, Henkensmeier D, Kim JY, Ham HC, Jang JH, Sci. Rep., 7, 7186 (2017)
Hsueh KL, Gonzalez ER, Srinivasan S, J. Electronchem. Soc, 131(4), 823 (1984)
Park J, Yang S, Chung Y, Kwon Y, Trans. of Korean Hydrogen and New Energy Society, 28(6), 669-674 (2017).
Nart FC, Iwasita T, Electrochim. Acta, 37(3), 385 (1992)
Yang G, Chen Y, Zhou Y, Tang Y, Lu T, Electrochem. Commun., 12, 492 (2010)
Sun HJ, Xu JF, Fu GT, Mao XB, Zhang L, Chen Y, Zhou YM, Lu TH, Tang YW, Electrochim. Acta, 59, 279 (2012)
Oono Y, Sounai A, Hori M, J. Power Sources, 189(2), 943 (2009)
Kadiri FE, Faure R, Durand R, J. Electroanal. Chem., 301, 177 (1991)
Conway BE, Novak DM, J. Electrochem. Soc., 128(5), 956 (1981)
Deng YJ, Wiberg GKH, Zana A, Arenz M, Electrochim. Acta, 204, 78 (2016)
Hall SB, Khudaish EA, Hart AL, Electrochim. Acta, 44(25), 4573 (1999)
Atsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJJ, Phts. Chem. Chem. Phys., 14, 7384 (2012)
Gomez-Marin AM, Rizo R, Feliu JM, Beilstein J. Nanotechnol., 4, 956 (2013)