ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 28, 2019
Accepted April 17, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CFD모사기법을 이용한 가스 여과기 성능 해석

Analysis of a Gas Mask Using CFD Simulation

한밭대학교 화학생명공학과, 34158 대전광역시 유성구 동서대로 125 1SG생활안전, 17878 경기도 평택시 신평로 28 2국방과학연구소 제5기술연구본부 3부, 34186 대전광역시 유성우체국 사서함 35호 3연세대학교 화공생명공학과, 03722 서울특별시 서대문구 연세로 50
Department of Biological and Chemical Engineering, Hanbat National University, 125, Dongseo-daero, Yuseong-gu, Daejeon, 34158, Korea 1SG Safety Corporation, 28, Sinpyeong-ro, Pyeongtaek-si, Gyeonggi-do, 17878, Korea 2The 5th R&D institute 3rd directorate, Agency for Defense Development, Yuseong P.O.Box 35, Daejeon, 34186, Korea 3Department of Chemical and Biomolecular Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
minoh@hanbat.ac.kr
Korean Chemical Engineering Research, August 2019, 57(4), 475-483(9), 10.9713/kcer.2019.57.4.475 Epub 2 August 2019
downloadDownload PDF

Abstract

화학적 무기 중 혈액작용제는 전자전달계 내 효소의 철 이온과 반응하고 세포호흡을 정지시켜 사망을 초래한다. 혈액작용제는 활성탄의 미세공보다 분자크기가 작아 화학적 흡착이 유일한 제독방법이다. 본 연구는 SG 생활안전에서 개발한 SG-1 가스 여과기를 이용하여 혈액작용제 시아노겐 클로라이드(CK) 가스의 유입에 따른 유동해석을 수행하였다. 구리, 은, 아연 및 몰리브데늄 이온이 첨착된 ASZM TEDA 활성탄을 적용하여 가스 여과기 제작 시험 규정에 따라 화학적 흡착 모사를 수행하였으며 흡착 Kinetic을 적용하기 위해 선 수행된 흡착 베드에서 CK 가스 흡착 실험 결과를 분석하였다. 화학적 흡착을 통해 발생되는 가스 여과기 내부 압력강하 및 가스 흡착 질량 등 주요 변수의 동적거동을 예측하였다. CFD에서 다공성 물질을 적용할 때 사용하는 Ergun 방정식 대신 Granular와 Packed bed를 사용하여 활성탄 적용 가능 결과를 확인하였으며 시간에 따른 흡착 및 유속에 따른 흡착의 유동 해석에 대한 동적 모사를 수행하였다.
Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum- Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

References

Evison D, Hinsley D, Rice P, Bmj, 324, 332 (2002)
Yang YC, Accounts Chem. Res., 32(2), 109 (1999)
Anderson PD, J. Pharmacy Practice, 25(1), 61 (2012)
Chauhan S, D’cruz R, Faruqi S, Singh KK, Varma S, Singh M, Karthik V, Environmental Toxicology Pharmacology, 26(2), 113 (2008)
http://www.dtaq.re.kr/_custom/dtaq/_common/board/download.jsp?attach_no=175106.html.
Szinicz L, Toxicology, 214(3), 167 (2005)
http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02301740.html.
Doughty DT, James EG, “Chromium-free Impregnated Activated Carbon for Adsorption of Toxic Gases and/or Vapors,” U.S. Patent No. 5,063,196(1991).
Kim MW, Kim YS, Park YH, Fire Science Engineering, 31(4), 7 (2017)
Kloubek J, Medek J, Carbon, 24(4), 501 (1986)
http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE02297893.html.
Park DY, Park JY, Yoon CS, Korean Ind. Hyg. Assoc. J, 9(2), 19 (1999)
Kloubek J, Medek J, Carbon, 24(4), 501 (1986)
Rehrmann JA, Leonard AJ, Carbon, 16(1), 47 (1978)
Ruch WE, Nelson GO, Lindeken CL, American Industrial Hygiene Association Journal, 33(2), 105-109(1972).
Nelson GO, Hodgkins DJ, American Industrial Hygiene Association Journal, 33(2), 110-116(1972).
Shin CS, Kim KH, Kang YG, J. Korean Soc. Saf., 15(2), 84 (2000)
Wheeler A, Robell AJ, Journal of Catalysis, 13(3), 299-305(1969).
Su YC, Li CC, Advances in Mechanical Engineering, 7(8), 1687814015596297 (2015).
Li CC, Chemical Engineering Science, 64(8), 1832 (2009)
Jonas LA, Joseph AR, Carbon, 12(2), 95 (1974)
Mahle JJ, Peterson GW, Schindler BJ, The Journal of Physical Chemistry C, 114(47), 20083-20090(2010).
Tripathi VS, Ramachandran PK, Carbon, 20(1), 25 (1982)
Fluent, Ansys. “12.0 Theory Guide,” Ansys Inc, 5(5), (2009).
http://www.prism.go.kr/homepage/entire/retrieveEntireDetail.do;jsessionid=018BD294EC617D960340A0ADD7E8663E.node02?cond_research_name=&cond_research_start_date=&cond_research_end_date=&research_id=1290000-200400017&pageIndex=3493&leftMenuLevel=160.html.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로