Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 4, 2019
Accepted July 11, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Electrochemical Performance of High-Voltage LiMn0.8Fe0.2PO4 Cathode with Polyacrylonitrile (PAN)-Based Gel Polymer Electrolyte
Department of Solar & Energy Engineering, Cheongju University, 298, Daeseong-ro, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28503, Korea
jaekwang@cju.ac.kr
Korean Chemical Engineering Research, August 2019, 57(4), 547-552(6), 10.9713/kcer.2019.57.4.547 Epub 2 August 2019
Download PDF
Abstract
Electrochemical properties of LiMn0.8Fe0.2PO4 cathode were investigated with gel polymer electrolyte (GPE). To access fast and efficient transport of ions and electrons during the charge/discharge process, a pure and well-crystallized LiMn0.8Fe0.2PO4 cathode material was directly synthesized via spray-pyrolysis method. For high operation voltage, polyacrylonitrile (PAN)-based gel polymer electrolyte was then prepared by electrospinning process. The gel polymer electrolyte showed high ionic conductivity of 2.9 × 10-3 S cm-1 at 25 °C and good electrochemical stability. Li/GEP/ LiMn0.8Fe0.2PO4 cell delivered a discharge capacity of 159 mAh g-1 at 0.1 C rate that was close to the theoretical value (170 mAh g-1). The cell allows stable cycle performance (99.3% capacity retention) with discharge capacity of 133.5 mAh g-1 for over 300 cycles at 1 C rate and exhibits high rate-capability. PAN-based gel polymer is a suitable electrolyte for application in LiMn0.8Fe0.2PO4/Li batteries with perspective in high energy density and safety.
Keywords
References
Jeon DM, Na BK, Rhee YW, Korean Chem. Eng. Res., 56(6), 798 (2018)
Fan ZY, Jin EM, Jeong SM, Korean Chem. Eng. Res., 55(6), 861 (2017)
Lim JE, Kim JK, Korean J. Chem. Eng., 35(12), 2464 (2018)
Chung SY, Bloking JT, Chiang YM, Nature, 1(2), 123 (2002)
Huang YH, Goodenough JB, Chem. Mater., 20(23), 7237 (2008)
Kang B, Ceder G, Nature, 458, 190 (2009)
Tarascon JM, Armand M, Nature, 414, 359 (2001)
Zane D, Carewska M, Scaccia S, Cardellini F, Prosini PP, Electrochim. Acta, 49(25), 4259 (2004)
Wang L, Zhou F, Ceder G, Electrochem. Solid State Lett., 11(6), A94 (2008)
Drezen T, Kwon NH, Bowen P, Teerlinck I, Isono M, Exnar I, J. Power Sources, 174(2), 949 (2007)
Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I, J. Electrochem. Soc., 156(7), A541 (2009)
Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Yang Z, Nano Lett., 10(8), 2799 (2010)
Bakenov Z, Taniguchi I, J. Power Sources, 195(21), 7445 (2010)
Kang B, Ceder G, J. Electrochem. Soc., 157(7), A808 (2010)
Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R, J. Electrochem. Soc., 151(9), A1352 (2004)
Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G, Physical Review B, 70(23), 235121 (2004)
Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y, J. Power Sources, 119-121, 232 (2003)
Yan SY, Wang CY, Gu RM, Sun S, Li MW, J. Alloy. Compd., 628, 471 (2015)
Li GH, Azuma H, Tohda M, J. Electrochem. Soc., 149(6), A743 (2002)
Mi CH, Zhang XH, Zhao XB, Li HL, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 129(1-3), 8 (2006)
Hong JA, Wang F, Wang XL, Graetz J, J. Power Sources, 196(7), 3659 (2011)
Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y, Electrochem. Commun., 12, 1784 (2010)
Kim JK, Hwang GC, Kim SH, Ahn JH, J. Ind. Eng. Chem., 66, 94 (2018)
Yamada A, Kudo Y, Liu KY, J. Electrochem. Soc., 148(10), A1153 (2001)
Yamada A, Chung SC, J. Electrochem. Soc., 148(8), A960 (2001)
Abbrent S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A, Polymer, 42(4), 1407 (2001)
Huang BY, Wang ZX, Chen LQ, Xue RJ, Wang FS, Solid State Ion., 91(3-4), 279 (1996)
Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C, J. Power Sources, 196(16), 6742 (2011)
Tsutsumi H, Matsuo A, Takase K, Doi S, Hisanaga A, Onimura K, Oishi T, J. Power Sources, 90(1), 33 (2000)
Jo MS, Ghosh S, Jeong SM, Kang YC, Cho JS, Nano-Micro Lett., 11(1), 1 (2019)
Oh SH, Kim JK, Kang YC, Cho JS, Nanoscale, 10(39), 18734 (2018)
Ko HS, Park HW, Kim GJ, Lee JD, Korean J. Chem. Eng., 36(4), 620 (2019)
Wang Y, He P, Zhou H, Energy Environ. Sci., 4(3), 805 (2011)
Raghaven P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah C, J. Power Sources, 184(2), 437 (2008)
Min HS, Ko JM, Kim DW, J. Power Sources, 119, 469 (2003)
Abraham KM, Jiang Z, Carroll B, Chem. Mater., 9(9), 1978 (1997)
Watanabe M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z, J. Appl. Phys., 57, 123 (1985)
Roberts MR, Vitins G, Denuault G, Owen JR, J. Electrochem. Soc., 157(4), A381 (2010)
Fan ZY, Jin EM, Jeong SM, Korean Chem. Eng. Res., 55(6), 861 (2017)
Lim JE, Kim JK, Korean J. Chem. Eng., 35(12), 2464 (2018)
Chung SY, Bloking JT, Chiang YM, Nature, 1(2), 123 (2002)
Huang YH, Goodenough JB, Chem. Mater., 20(23), 7237 (2008)
Kang B, Ceder G, Nature, 458, 190 (2009)
Tarascon JM, Armand M, Nature, 414, 359 (2001)
Zane D, Carewska M, Scaccia S, Cardellini F, Prosini PP, Electrochim. Acta, 49(25), 4259 (2004)
Wang L, Zhou F, Ceder G, Electrochem. Solid State Lett., 11(6), A94 (2008)
Drezen T, Kwon NH, Bowen P, Teerlinck I, Isono M, Exnar I, J. Power Sources, 174(2), 949 (2007)
Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I, J. Electrochem. Soc., 156(7), A541 (2009)
Choi D, Wang D, Bae IT, Xiao J, Nie Z, Wang W, Yang Z, Nano Lett., 10(8), 2799 (2010)
Bakenov Z, Taniguchi I, J. Power Sources, 195(21), 7445 (2010)
Kang B, Ceder G, J. Electrochem. Soc., 157(7), A808 (2010)
Yonemura M, Yamada A, Takei Y, Sonoyama N, Kanno R, J. Electrochem. Soc., 151(9), A1352 (2004)
Zhou F, Cococcioni M, Marianetti CA, Morgan D, Ceder G, Physical Review B, 70(23), 235121 (2004)
Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y, J. Power Sources, 119-121, 232 (2003)
Yan SY, Wang CY, Gu RM, Sun S, Li MW, J. Alloy. Compd., 628, 471 (2015)
Li GH, Azuma H, Tohda M, J. Electrochem. Soc., 149(6), A743 (2002)
Mi CH, Zhang XH, Zhao XB, Li HL, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 129(1-3), 8 (2006)
Hong JA, Wang F, Wang XL, Graetz J, J. Power Sources, 196(7), 3659 (2011)
Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y, Electrochem. Commun., 12, 1784 (2010)
Kim JK, Hwang GC, Kim SH, Ahn JH, J. Ind. Eng. Chem., 66, 94 (2018)
Yamada A, Kudo Y, Liu KY, J. Electrochem. Soc., 148(10), A1153 (2001)
Yamada A, Chung SC, J. Electrochem. Soc., 148(8), A960 (2001)
Abbrent S, Plestil J, Hlavata D, Lindgren J, Tegenfeldt J, Wendsjo A, Polymer, 42(4), 1407 (2001)
Huang BY, Wang ZX, Chen LQ, Xue RJ, Wang FS, Solid State Ion., 91(3-4), 279 (1996)
Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C, J. Power Sources, 196(16), 6742 (2011)
Tsutsumi H, Matsuo A, Takase K, Doi S, Hisanaga A, Onimura K, Oishi T, J. Power Sources, 90(1), 33 (2000)
Jo MS, Ghosh S, Jeong SM, Kang YC, Cho JS, Nano-Micro Lett., 11(1), 1 (2019)
Oh SH, Kim JK, Kang YC, Cho JS, Nanoscale, 10(39), 18734 (2018)
Ko HS, Park HW, Kim GJ, Lee JD, Korean J. Chem. Eng., 36(4), 620 (2019)
Wang Y, He P, Zhou H, Energy Environ. Sci., 4(3), 805 (2011)
Raghaven P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah C, J. Power Sources, 184(2), 437 (2008)
Min HS, Ko JM, Kim DW, J. Power Sources, 119, 469 (2003)
Abraham KM, Jiang Z, Carroll B, Chem. Mater., 9(9), 1978 (1997)
Watanabe M, Sanui K, Ogata N, Kobayashi T, Ohtaki Z, J. Appl. Phys., 57, 123 (1985)
Roberts MR, Vitins G, Denuault G, Owen JR, J. Electrochem. Soc., 157(4), A381 (2010)