Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 21, 2019
Accepted July 17, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 리튬이온배터리 음극소재 적용
Application of Hierarchical ZnCo2O4 Hollow Nanofibers for Anode Materials in Lithium-ion Batteries
충북대학교 공업화학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Engineering Chemistry, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, Korea
jscho@cbnu.ac.kr
Korean Chemical Engineering Research, August 2019, 57(4), 559-564(6), 10.9713/kcer.2019.57.4.559 Epub 2 August 2019
Download PDF
Abstract
본 연구는 계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유를 전기방사공정 및 후 열처리 공정을 통해 합성했다. 용액에 polystyrene (PS) 나노비드를 첨가하여 방사된 섬유는 열처리 과정을 통해 PS가 제거됨으로써 구조체 내 기공이 균일하게 생성되었으며 이는 구조체 내로 열 전달 및 가스의 침투를 원활히 함으로써 계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유가 합성될 수 있었다. 계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유를 리튬 이차전지의 음극활물질로 적용한 결과, 1.0 A g-1의 높은 전류밀도에도 불구하고 300 사이클 동안 815 mA h g-1 (646 mA h cm-3)의 높은 가역 용량을 유지했다. 반면 ZnCo2O4 나노 분말은 300 사이클 후 487 mA h g-1 (450 mA h cm-3)의 방전 용량을 나타냈다. 계층적 구조를 갖는 중공형 ZnCo2O4 나노 섬유의 우수한 리튬 저장 특성은 중공 구조 및 섬유 표면을 구성하는 ZnCo2O4 나노결정에 기인한 결과이다. 본 연구에서 제안한 계층적 구조를 갖는 중공형 나노 섬유 구조체는 다양한 금속 산화물로 확장 적용이 가능하며 에너지 저장 분야를 포함한 여러 분야에 응용 가능하다.
Hierarchical ZnCo2O4 hollow nanofibers were prepared by electrospinning and subsequent heat-treatment process. The spinning solution containing polystyrene (PS) nanobeads was electrospun to nanofibers. During heat-treatment process, PS nanobeads in the composite were decomposed and therefore generated numerous pores uniformly in the structure, which facilitated the heat transfer and gas penetration into the structure. The resulting hierarchical ZnCo2O4 hollow nanofibers were applied as an anode material for lithium-ion batteries. The discharge capacity of the nanofibers was 815 mA h g-1 (646 mA h cm-3) after the 300th cycle at a high current density of 1.0 A g-1. However, ZnCo2O4 nanopowders showed the discharge capacity of 487 mA h g-1 (450 mA h cm-3) after 300th cycle. The excellent lithium ion storage property of the hierarchical ZnCo2O4 hollow nanofibers was attributed to the synergetic effects of the hollow nanofiber structure and the ZnCo2O4 nanocrystals composing the shell. The hierarchical hollow nanofiber structure introduced in this study can be extended to various metal oxides for various applications, including energy storage.
References
Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421 (2014)
Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195 (2017)
Lim JE, Kim JK, Korean J. Chem. Eng., 35(12), 2464 (2018)
Lim WG, Jo CS, Lee JW, Hwang DS, Korean J. Chem. Eng., 35(2), 579 (2018)
Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252 (2015)
Cho JS, Hong YJ, Kang YC, ACS Nano, 9(4), 4026 (2015)
Jo MS, Ghosh S, Jeong SM, Kang YC, Cho JS, Nano-Micro Lett., 11(1), 1 (2019)
Kim SC, Park YK, Kim BH, Kim HG, Lee WJ, Lee H, Jung SC, Korean J. Chem. Eng., 35(3), 750 (2018)
Yang DH, Kong L, Zhong M, Zhu J, Bu XH, Small, 15(3), 180405 (2019)
Shen L, Yu L, Yu XY, Zhang X, Lou XW, Angew. Chem.-Int. Edit., 54(6), 1868 (2015)
Huang H, Li Q, Yin D, Wang L, Adv. Funct. Mater., 27(5), 160494 (2017)
Fu C, Li G, Luo D, Huang X, Zheng J, Li L, ACS Appl. Mater. Interfaces, 6(4), 2439 (2014)
Jadhav HS, Kalubarme RS, Park C, Kim J, Park C, Nanoscale, 6(17), 10071 (2014)
Yin L, Zhang Z, Li Z, Hao F, Li Q, Wang C, Fan R, Qi Y, Adv. Funct. Mater., 24(26), 4176 (2014)
Yan CS, Chen G, Zhou X, Sun JX, Lv CD, Adv. Funct. Mater., 26(9), 1428 (2016)
Oh SH, Park JS, Jo MS, Kang YC, Cho JS, Chem. Eng. J., 347, 889 (2018)
Sun J, Lv C, Lv F, Chen S, Li D, Guo Z, Han W, Yang D, Guo S, ACS Nano, 11(6), 6186 (2017)
Wang NN, Bai ZC, Qian YT, Yang J, Adv. Mater., 28(21), 4126 (2016)
Xu X, Tan H, Xi K, Ding S, Yu D, Cheng S, Yang G, Peng X, Fakeeh A, Kumar RV, Carbon, 84, 491 (2015)
Awada H, Daneault C, Appl. Sci., 5(4), 840 (2015)
Lee JH, Oh SH, Jeong SY, Kang YC, Cho JS, Nanoscale, 10(45), 21483 (2018)
Sreekanth M, Ghosh S, Mehta S, Ganguli A, Jha M, CrystEngComm, 19(16), 2264 (2017)
Wang L, Yu Y, Chen P, Chen C, Scr. Mater., 58(5), 405 (2008)
Bai J, Li XG, Liu GZ, Qian YT, Xiong SL, Adv. Funct. Mater., 24(20), 3012 (2014)
Choi SH, Kang YC, ChemSus-Chem, 6(11), 2111 (2013)
Guo L, Ru Q, Song X, Hu S, Mo Y, J. Mater. Chem. A, 3(16), 8683 (2015)
Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G, Nano Lett., 12(6), 3005 (2012)
Sharma Y, Sharma N, Rao GVS, Chowdari BVR, Adv. Funct. Mater., 17(15), 2855 (2007)
An G, Lee D, Ahn H, ACS Appl. Mater. Interfaces, 9(14), 12478 (2017)
Cho JS, Park J, Jeon KM, Kang YC, J. Mater. Chem. A, 5(21), 10632 (2017)
Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195 (2017)
Lim JE, Kim JK, Korean J. Chem. Eng., 35(12), 2464 (2018)
Lim WG, Jo CS, Lee JW, Hwang DS, Korean J. Chem. Eng., 35(2), 579 (2018)
Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18(5), 252 (2015)
Cho JS, Hong YJ, Kang YC, ACS Nano, 9(4), 4026 (2015)
Jo MS, Ghosh S, Jeong SM, Kang YC, Cho JS, Nano-Micro Lett., 11(1), 1 (2019)
Kim SC, Park YK, Kim BH, Kim HG, Lee WJ, Lee H, Jung SC, Korean J. Chem. Eng., 35(3), 750 (2018)
Yang DH, Kong L, Zhong M, Zhu J, Bu XH, Small, 15(3), 180405 (2019)
Shen L, Yu L, Yu XY, Zhang X, Lou XW, Angew. Chem.-Int. Edit., 54(6), 1868 (2015)
Huang H, Li Q, Yin D, Wang L, Adv. Funct. Mater., 27(5), 160494 (2017)
Fu C, Li G, Luo D, Huang X, Zheng J, Li L, ACS Appl. Mater. Interfaces, 6(4), 2439 (2014)
Jadhav HS, Kalubarme RS, Park C, Kim J, Park C, Nanoscale, 6(17), 10071 (2014)
Yin L, Zhang Z, Li Z, Hao F, Li Q, Wang C, Fan R, Qi Y, Adv. Funct. Mater., 24(26), 4176 (2014)
Yan CS, Chen G, Zhou X, Sun JX, Lv CD, Adv. Funct. Mater., 26(9), 1428 (2016)
Oh SH, Park JS, Jo MS, Kang YC, Cho JS, Chem. Eng. J., 347, 889 (2018)
Sun J, Lv C, Lv F, Chen S, Li D, Guo Z, Han W, Yang D, Guo S, ACS Nano, 11(6), 6186 (2017)
Wang NN, Bai ZC, Qian YT, Yang J, Adv. Mater., 28(21), 4126 (2016)
Xu X, Tan H, Xi K, Ding S, Yu D, Cheng S, Yang G, Peng X, Fakeeh A, Kumar RV, Carbon, 84, 491 (2015)
Awada H, Daneault C, Appl. Sci., 5(4), 840 (2015)
Lee JH, Oh SH, Jeong SY, Kang YC, Cho JS, Nanoscale, 10(45), 21483 (2018)
Sreekanth M, Ghosh S, Mehta S, Ganguli A, Jha M, CrystEngComm, 19(16), 2264 (2017)
Wang L, Yu Y, Chen P, Chen C, Scr. Mater., 58(5), 405 (2008)
Bai J, Li XG, Liu GZ, Qian YT, Xiong SL, Adv. Funct. Mater., 24(20), 3012 (2014)
Choi SH, Kang YC, ChemSus-Chem, 6(11), 2111 (2013)
Guo L, Ru Q, Song X, Hu S, Mo Y, J. Mater. Chem. A, 3(16), 8683 (2015)
Liu B, Zhang J, Wang X, Chen G, Chen D, Zhou C, Shen G, Nano Lett., 12(6), 3005 (2012)
Sharma Y, Sharma N, Rao GVS, Chowdari BVR, Adv. Funct. Mater., 17(15), 2855 (2007)
An G, Lee D, Ahn H, ACS Appl. Mater. Interfaces, 9(14), 12478 (2017)
Cho JS, Park J, Jeon KM, Kang YC, J. Mater. Chem. A, 5(21), 10632 (2017)