ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 22, 2019
Accepted June 26, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon

공주대학교 화학공학부, 31080 충남 천안시 서북구 천안대로 1223-24
Division of Chemical Engineering, Kongju National University, 1223-24 Cheonan-daero, Seobuk-gu, Cheonan-si, Chungcheongnam-do, 31080, Korea
jjlee@kongju.ac.kr
Korean Chemical Engineering Research, October 2019, 57(5), 679-686(8), 10.9713/kcer.2019.57.5.679 Epub 20 September 2019
downloadDownload PDF

Abstract

수용액으로부터 활성탄에 대한 아닐린 블루의 흡착 평형, 동역학 및 열역학적 특성을 초기농도, 접촉시간과 온도를 흡착변수로 하여 조사하였다. 아닐린 블루의 등온흡착은 Langmuir, Freundlich, Redlich-Peterson, Temkin 및 Dubinin-Radushkevich 모델을 통해 해석하였다. Langmuir 모델이 다른 모델들 보다 등온 데이터에 더 잘 맞았다. 평가된 Langmuir 분리계수(RL=0.036~0.068)는 활성탄에 의한 아닐린 블루의 흡착 공정이 효과적인 처리방법이 될수 있음을 나타냈다. 흡착속도상수는 유사일차속도 모델, 유사이차속도 모델 및 입자내 확산 모델에 적용하여 구하였다. 활성탄에 대한 아닐린 블루의 흡착속도실험 결과는 유사이차 반응속도식에 잘 따랐다. 흡착 메카니즘은 입자내 확산 모델에 의해 경막 확산과 입자내 확산의 두 단계로 평가되었다. 흡착공정에 대한 깁스 자유에너지, 엔탈피 및 엔트로피 변화와 같은 열역학 파라미터들이 평가되었다. 엔탈피 변화(48.49 kJ/mol)은 흡착공정이 물리흡착이고 흡열반응임을 알려주었다. 깁스 자유 에너지는 온도가 올라갈수록 감소하였기 때문에 흡착반응은 온도가 올라갈수록 자발성이 더 높아졌다. 등량흡착열은 흡착제 표면의 에너지 불균일성 때문에 흡착제와 흡착질 사이에 상호작용이 있음을 나타내었다.
Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors (RL=0.036~0.068) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

References

Akar T, Demir TA, Kiran I, Ozcan A, Ozcan AS, Tunali S, J. Chem. Technol. Biotechnol., 81(7), 1110 (2006)
Qi JR, Li Z, Guo YP, Xu HD, Mater. Chem. Phys., 87(1), 96 (2004)
Lee JJ, Korean Chem. Eng. Res., 56(1), 112 (2018)
Park HN, Choi HA, Won SW, Korean Chem. Eng. Res., 56(1), 96 (2018)
Lee MG, Yun JW, Suh JH, Korean Chem. Eng. Res., 55(6), 771 (2017)
Yang JW, Kim JH, Korean Chem. Eng. Res., 57(2), 210 (2019)
Carolina Biological Supply Co., “Anilin Blue, Sodium salt SDS,” (2019).
Panizza M, Cerisola G, J. Hazard. Mater., 153(1-2), 83 (2008)
Kumar M, Tamilarasan R, Carbohydr. Polym., 92(2), 2171 (2013)
Unuabonah EI, Adebowale KO, Dawodu FA, J. Hazard. Mater., 157(2-3), 397 (2008)
Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)
Lee JJ, Appl. Chem. Eng., 30(2), 190 (2019)
Wu FC, Liu BL, Wu KT, Tseng RL, Chem. Eng. J., 162(1), 21 (2010)
Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
Fu JW, Zhu JH, Wang ZW, Wang YH, Wang SM, Yan RQ, Xu Q, J. Colloid Interface Sci., 542, 123 (2019)
Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M, Ecotoxicol. Environ. Safe., 163, 365 (2018)
Saruchi, Kumar V, Arabian J. Chem., 12(3), 316 (2019)
Rajabi M, Mahanpoor K, Morami O, Composite Part B Eng., 167, 544 (2019)
Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253(11), 4843 (2007)
Wu FC, Tseng RL, Juang RS, Chem. Eng. J., 153(1-3), 1 (2009)
AUI, Abdulraheem G, Bala S, Muhammad S, Abdullahi M, Int. Biodeterior. Biodegrad., 102, 265 (2015)
Sato T, Abe S, Ito S, Abe T, J. Environ. Chem. Eng., 7(2), 521 (2019)
Bayramoglu G, Arica MY, Korean J. Chem. Eng., 35(6), 1303 (2018)
Jung KW, Choi BH, Hwang MJ, Choi JW, Lee SH, Chang JS, Ahn KH, J. Clean Prod., 166, 360 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로