Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 23, 2019
Accepted May 4, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
순환유동층 로내 탈황을 위한 국내 석회석의 마모 및 소성 특성
The Attrition and Calcination Characteristics of Domestic Limestones for In-Situ Desulfurization in Circulating Fluidized Bed Boilers
전북대학교 자원에너지공학과, 54896 전라북도 전주시 덕진구 백제대로 567 1한국기계연구원 환경시스템연구본부, 34103 대전광역시 유성구 가정북로 156
Department of Mineral resources energy engineering, Chonbuk national university, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Korea 1Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Korea
donald@jbnu.ac.kr
Korean Chemical Engineering Research, October 2019, 57(5), 687-694(8), 10.9713/kcer.2019.57.5.687 Epub 20 September 2019
Download PDF
Abstract
순환유동층 연소로에서 탈황을 위하여 사용되는 석회석의 거동을 분석하기 위하여 국내에서 생산되는 석회석의 마모 및 소성 반응 특성을 고찰하였다. 이를 위하여 열중량분석기 및 ASTM D5757-95 마모 시험기를 이용하였다. 순환유동층 내의 석회석의 입도는 입자-입자, 입자-반응기 외벽의 충돌에 따른 마모와 소성 반응에 따라 변화하게 된다. 국내에서 공급된 석회석 시료들은 상용 순환유동층 보일러에서 이용가능하나 석회석들 간의 마모 및 평균 입도 변화는 서로 다르게 나타났다. 또한 순환유동층 보일러의 조업온도인 850 °C 에서 진행된 소성 반응도 석회석 별로 차이가 나타났다. 특히 입자의 크기가 증가할수록 소성 반응에 필요한 시간이 증가함을 확인하였다. 더불어 소성된 석회석 시료는 20% 이상 비산입자를 많이 배출하였다.
In order to investigate the behavior of limestones which have been usually used for in-situ desulfurization reaction in circulating fluidized bed combustors, the attrition characteristics and calcination reactions of domestic limestones were analyzed in this study by using a thermogravimetric analyzer and an ASTM D5757-95 attrition tester. The average size distribution of limestones in circulating fluidized bed boilers have to be changed due to the attrition of particle-particle and particle-reactor wall and the calcination reaction. Domestic limestones might be used in commercial circulating fluidized bed boilers, but the attrition behaviors and particle size changes of limestones were varied. In calcination experiments at 850 °C, the calcination reaction were varied with limestone samples. The calcination reaction time increased with an increase of particle size. Also, fine particles generated the attrition test of calcined limestone was 20% higher than those generated the attrition test of original limestone.
References
Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121 (2019)
Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
Shin JH, Lee LS, Lee SH, Korean Chem. Eng. Res., 54(4), 501 (2016)
Lee SH, Kim JM, Eom WH, Ryi SK, Park JS, Baek LH, Chem. Eng. J., 207-208, 521 (2012)
Lee DY, Ryu HJ, Shun DW, Bae DH, Baek JI, Korean J. Chem. Eng., 35(6), 1257 (2018)
Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092 (2017)
Kim YB, Gwak YR, Keel SI, Yun JH, and Lee SH, Chem. Eng. J., http://doi.org/10.1016/j.cej.2018.08.036(2019).
Lee JR, Hasolli N, Jeon SM, Lee KS, Kim KD, Kim YH, Lee KY, Park YO, Korean J. Chem. Eng., 35(11), 2321 (2018)
Lee JW, Chung SW, Ryu SO, Lee JE, Yun Y, Lee C, Kim Y, Lim S, Korean J. Chem. Eng., 34(1), 54 (2017)
Salehi-Asl M, Azhgan S, Movahedirad S, Korean J. Chem. Eng., 35(2), 613 (2018)
Gomez M, Fernandez A, Llavona I, Kuivalainen R, Appl. Therm. Eng., 65, 617 (2014)
Gwak YR, Kim YB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(5), 631 (2018)
Wu YH, Wang CB, Tan YW, Jia LF, Anthony EJ, Appl. Energy, 88(9), 2940 (2011)
Park JM, Keel SI, Yun JH, Yun JH, Lee SS, Korean J. Chem. Eng., 2204(8), 2017
Liljedahl G, Turek D, Nsakala N, Mohn N, Fout T, Proceedings of the 31st international technical conference on Coal utilization & fuel systems May, USA (2006).
Ramezani M, Tremain P, Doroodchi E, Moghtaderi B, Energy Procedia, 114, 259 (2017)
Won YS, Jeong AR, Choi JH, Jo SH, Ryu HJ, Yi CK, Korean J. Chem. Eng., 34(3), 913 (2017)
Shun DW, Shin JS, Bae DH, Ryu HJ, Park JH, Korean J. Chem. Eng., 34(12), 3125 (2017)
Jeong S, Lee KS, Keel SI, Yun JH, Kim YJ, Kim SS, Fuel, 161, 1 (2015)
Chen HC, Zhao CS, Chem. Eng. Technol., 39(6), 1058 (2016)
Wang LY, Li SY, Eddings EG, Ind. Eng. Chem. Res., 54(14), 3548 (2015)
Kochel A, Cieplinska A, Szyrnanek A, Energy Fuels, 29(1), 331 (2015)
Wang CB, Chen L, Jia LF, Tan YW, Appl. Energy, 155, 478 (2015)
Shin JH, Kim YR, Kook JW, Kwak IS, Park KI, Lee JM, Lee SH, Appl. Chem. Eng., 26(5), 557 (2015)
Seo JH, Baek CS, Kwon WT, Cho KH, Ahn JW, J. Korean Inst. Resour. Recycl., 24(6), 38 (2015)
Chung JD, Kim JW, Ha JH, J. Environ. Sci., 15(6), 587 (2006)
Park YG, Kim SH, Jo YM, J. Ind. Eng. Chem., 11(2), 180 (2005)
Kim YB, Gwak YR, KeeL SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(6), 856 (2018)
Benedikt F, Fuchs J, Schmid JC, Muller S, Hofbauer H, Korean J. Chem. Eng., 34(9), 2548 (2017)
Lee SH, Kim SD, Ind. Eng. Chem. Res., 43(4), 1090 (2004)
Lee SH, Park CS, Lee JG, Kim JH, Korean Ind. Eng. Chem., 19(3), 295 (2008)
Lee SH, Kim SD, Lee DH, Fuel, 81(13), 1633 (2002)
Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
Shin JH, Lee LS, Lee SH, Korean Chem. Eng. Res., 54(4), 501 (2016)
Lee SH, Kim JM, Eom WH, Ryi SK, Park JS, Baek LH, Chem. Eng. J., 207-208, 521 (2012)
Lee DY, Ryu HJ, Shun DW, Bae DH, Baek JI, Korean J. Chem. Eng., 35(6), 1257 (2018)
Kook JW, Gwak IS, Gwak YR, Seo MW, Lee SH, Korean J. Chem. Eng., 34(12), 3092 (2017)
Kim YB, Gwak YR, Keel SI, Yun JH, and Lee SH, Chem. Eng. J., http://doi.org/10.1016/j.cej.2018.08.036(2019).
Lee JR, Hasolli N, Jeon SM, Lee KS, Kim KD, Kim YH, Lee KY, Park YO, Korean J. Chem. Eng., 35(11), 2321 (2018)
Lee JW, Chung SW, Ryu SO, Lee JE, Yun Y, Lee C, Kim Y, Lim S, Korean J. Chem. Eng., 34(1), 54 (2017)
Salehi-Asl M, Azhgan S, Movahedirad S, Korean J. Chem. Eng., 35(2), 613 (2018)
Gomez M, Fernandez A, Llavona I, Kuivalainen R, Appl. Therm. Eng., 65, 617 (2014)
Gwak YR, Kim YB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(5), 631 (2018)
Wu YH, Wang CB, Tan YW, Jia LF, Anthony EJ, Appl. Energy, 88(9), 2940 (2011)
Park JM, Keel SI, Yun JH, Yun JH, Lee SS, Korean J. Chem. Eng., 2204(8), 2017
Liljedahl G, Turek D, Nsakala N, Mohn N, Fout T, Proceedings of the 31st international technical conference on Coal utilization & fuel systems May, USA (2006).
Ramezani M, Tremain P, Doroodchi E, Moghtaderi B, Energy Procedia, 114, 259 (2017)
Won YS, Jeong AR, Choi JH, Jo SH, Ryu HJ, Yi CK, Korean J. Chem. Eng., 34(3), 913 (2017)
Shun DW, Shin JS, Bae DH, Ryu HJ, Park JH, Korean J. Chem. Eng., 34(12), 3125 (2017)
Jeong S, Lee KS, Keel SI, Yun JH, Kim YJ, Kim SS, Fuel, 161, 1 (2015)
Chen HC, Zhao CS, Chem. Eng. Technol., 39(6), 1058 (2016)
Wang LY, Li SY, Eddings EG, Ind. Eng. Chem. Res., 54(14), 3548 (2015)
Kochel A, Cieplinska A, Szyrnanek A, Energy Fuels, 29(1), 331 (2015)
Wang CB, Chen L, Jia LF, Tan YW, Appl. Energy, 155, 478 (2015)
Shin JH, Kim YR, Kook JW, Kwak IS, Park KI, Lee JM, Lee SH, Appl. Chem. Eng., 26(5), 557 (2015)
Seo JH, Baek CS, Kwon WT, Cho KH, Ahn JW, J. Korean Inst. Resour. Recycl., 24(6), 38 (2015)
Chung JD, Kim JW, Ha JH, J. Environ. Sci., 15(6), 587 (2006)
Park YG, Kim SH, Jo YM, J. Ind. Eng. Chem., 11(2), 180 (2005)
Kim YB, Gwak YR, KeeL SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 56(6), 856 (2018)
Benedikt F, Fuchs J, Schmid JC, Muller S, Hofbauer H, Korean J. Chem. Eng., 34(9), 2548 (2017)
Lee SH, Kim SD, Ind. Eng. Chem. Res., 43(4), 1090 (2004)
Lee SH, Park CS, Lee JG, Kim JH, Korean Ind. Eng. Chem., 19(3), 295 (2008)
Lee SH, Kim SD, Lee DH, Fuel, 81(13), 1633 (2002)