ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 18, 2019
Accepted July 16, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과

The effects of different membranes on the performance of aqueous organic redox flow battery using anthraquinone and TEMPO redox couple

서울과학기술대학교 에너지환경대학원, 01811 서울특별시 노원구 공릉로 232
Graduate school of Energy and Environment, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811, Korea
Korean Chemical Engineering Research, October 2019, 57(5), 695-700(6), 10.9713/kcer.2019.57.5.695 Epub 20 September 2019
downloadDownload PDF

Abstract

본 연구에서는 유기물인 안트라퀴논(AQDS)와 템포(TEMPO) 를 활물질로 사용하고 N 중성 전해질 기반 수계 유기 레독스 흐름전지 성능이 멤브레인에 따라 어떻게 영향을 받는지 분석하였다. 안트라퀴논과 템포 모두 중성 전해질인 염화칼륨(KCl) 전해질에 대해 높은 전자전달성(0.068 V의 산화 반응 및 환원 반응의 피크 전위차) 및 셀전압(1.17 V)을 얻을 수 있었다. 성능비교를 위해 사용한 멤브레인으로, 상용 양이온 교환막 중 하나인 Nafion 212를 사용하였을 때, 0.1M 활물질을 1 M 염화칼륨 전해질에 용해해서 작동한 레독스 흐름전지 완전지 테스트를 통해, 전류효율 97%, 전 압 효율 59%의 성능을 나타내었지만, 방전 용량(discharge capacity)은 4 사이클에서 0.93 Ah·L-1로 이론 용량(2.68 Ah·L-1)의 35%를 도달하였으며, 총 10사이클 동안 방전 용량의 용량 손실율(capacity loss rate)은 0.018 Ah·L-1/cycle 이다. 그 외에도 Nafion 117 멤브레인, SELEMION CSO 멤브레인을 사용하여 단전지 성능을 테스트하였을 때, 오히 려 저항 증가 및 투과 유도로 인해 더 큰 용량 손실을 이끌었다.
In this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was 0.93 Ah·L-1 which is 35% of theoretical capacity (2.68 Ah·L-1) at 4th cycle and the capacity loss rate was 0.018 Ah·L-1/cycle during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

References

Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009 (2017)
Jo MS, Cho JS, Korean J. Chem. Eng. Res., 57(2), 267 (2019)
Dai Y, Zhu X, Korean J. Chem. Eng., 35(7), 1570 (2018)
Ryu JH, Korean J. Chem. Eng., 35(2), 328 (2018)
Shabanian SR, Edrisi S, Khoram FV, Korean J. Chem. Eng., 34(8), 2188 (2017)
Kim SY, Kim H, Korean J. Chem. Eng. Res., 57(3), 408 (2019)
Lim WG, Jo CS, Lee JW, Hwang DS, Korean J. Chem. Eng., 35(2), 579 (2018)
Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195 (2017)
Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187 (2018)
Jung M, Lee W, Noh C, Konovalova A, Yi GS, Kim S, Kwon Y, Henkensmeier D, J. Membr. Sci., 580, 110 (2019)
Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69 (2018)
Struzynska-Piron I, Jung M, Maljusch A, Conradi O, Kim S, Jang JH, Kim H, Kwon Y, Nam SW, Henkensmeier D, Eur. Polym. J., 96, 383 (2017)
Jung HY, Jeong S, Kwon Y, J. Electrochem. Soc., 163(1), A5090 (2016)
Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301 (2018)
Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9(42), 36799 (2017)
Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388 (2018)
Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438 (2019)
Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR, J. Electrochem. Soc., 161(9), A1371 (2014)
Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10(43), 36882 (2018)
Lee WM, Kwon YJ, Korean Chem. Eng. Res., 56(6), 890 (2018)
Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nat. Energy, 1(9), 16102 (2016)
Lee WM, Chung KY, Kwon YC, Korean Chem. Eng. Res., 57(2), 239 (2019)
Janoschka T, Martin N, Hager MD, Schubert US, Angew. Chem.-Int. Edit., 55(46), 14427 (2016)
Chang ZJ, Henkensmeier D, Chen RY, J. Power Sources, 418, 11 (2019)
Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로