ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 3, 2019
Accepted June 23, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports

충북대학교 화학공학과, 28644 충북 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, Chungdaero-1 Seowongu, Cheongju, Chungbuk 28644, Korea
chshin@chungbuk.ac.kr
Korean Chemical Engineering Research, October 2019, 57(5), 714-722(9), 10.9713/kcer.2019.57.5.714 Epub 20 September 2019
downloadDownload PDF

Abstract

산·염기성질이 다양하게 존재하는 담체(SiO2-Y2O3, Al2O3, SiO2-ZrO2, SiO2, TiO2, MgO) 상에 17 wt% Ni을 고정한 상태에서 함침법을 사용하여 촉매를 제조하여 수소 존재 하에 에탄올과 암모니아의 환원성 아민화 반응에 대한 촉매 활성을 비교 평가하였다. 반응 전후에 있어 사용된 촉매는 X-선 회절, 질소 흡착, 에탄올-승온탈착(EtOH-TPD), 이소프로판올-승온탈착(IPA-TPD), 수소 화학흡착을 사용하여 특성분석을 수행하였다. pH 9.5 이상에서 침전법을 사용하여 ZrO2와 Y2O3 담체 제조 시 파이렉스 반응기에서 미량의 Si 용융으로 인해 SiO2-ZrO2와 SiO2-Y2O3 복합 산화물이 각각 생성되었다. 사용된 촉매 중에서 Ni/SiO2-Y2O3 촉매가 가장 좋은 활성을 보였으며 이는 높은 니켈 분산도와 EtOHTPD와 IPA-TPD 에서의 낮은 탈착온도 등과 밀접한 관련이 있었다. Ni/MgO 촉매상에서의 낮은 촉매 활성은 NiOMgO 고형물 형성에 기인한 것으로 보이며, Ni/TiO2 경우에서는 담체-금속 간의 강한 상호 작용으로 인해 낮은 니켈금속 상 존재로 인해 반응성이 낮게 나왔다. TiO2와 MgO 이외의 담체를 사용한 경우에 있어서 유사한 에탄올 전환율에서의 에틸아민류와 아세토니트릴 선택도는 큰 차이를 보이지 않았다.
Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support (SiO2-Y2O3, Al2O3, SiO2-ZrO2, SiO2, TiO2, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing ZrO2 and Y2O3 supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides SiO2-ZrO2 and SiO2-Y2O3. Among the catalysts used, Ni/SiO2-Y2O3 catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of Ni/TiO2, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as SiO2-Y2O3, Al2O3, SiO2-ZrO2, and SiO2, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.

References

Bahn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M, ChemCatChem, 3, 1853 (2011)
Park JH, Hong EP, An SH, Lim DH, Shin CH, Korean J. Chem. Eng., 34(10), 2610 (2017)
Sewell GS, Oconnor CT, Vansteen E, J. Catal., 167(2), 513 (1997)
Sewell G, Oconnor C, Vansteen E, Appl. Catal. A: Gen., 125(1), 99 (1995)
Hayes KS, Appl. Catal. A: Gen., 221(1-2), 187 (2001)
Sun J, Qiu XP, Wu F, Zhu WT, Int. J. Hydrog. Energy, 30(4), 437 (2005)
Sun J, Qiu XP, Wu F, Zhu WT, Wang WD, Hao SJ, Int. J. Hydrog. Energy, 29(10), 1075 (2004)
Pospisil M, Kanokova P, J. Therm. Anal. Calorim., 58, 77 (1999)
Velu S, Satoh N, Gopinath CS, Suzuki K, Catal. Lett., 82(1-2), 145 (2002)
Jeong YS, Shin CH, Korean Chem. Eng. Res., 57(1), 133 (2019)
Bellido JDA, Assaf EM, Appl. Catal. A: Gen., 352(1-2), 179 (2009)
Liu HM, He DH, Int. J. Hydrog. Energy, 36(22), 14447 (2011)
Arena F, Licciardello A, Parmaliana A, Catal. Lett., 6, 139 (1990)
Kumar R, Kumar K, Choudary NV, Pant KK, Fuel Process. Technol., 186, 40 (2019)
Wang Y, Yao L, Wang SH, Mao DH, Hu CW, Fuel Process. Technol., 169, 199 (2018)
Pyen S, Hong E, Shin M, Suh YW, Shin CH, Mol. Catal., 448, 71 (2018)
Noguchi N, Morinaga Y, Kajio T, Yogarajah E, Nawa T, J. Am. Ceram. Soc., 101(10), 4549 (2018)
del Monte F, Larsen W, Mackenzie JD, J. Am. Ceram. Soc., 83(6), 1506 (2000)
Garvie R, J. Phys. Chem., 82, 218 (1978)
Garvie R, Goss M, J. Mater. Sci., 21, 1253 (1986)
Garvie RC, J. Phys. Chem., 69, 1238 (1965)
Kim SW, Kim HK, Lee S, Lee K, Han JT, Kim KB, Roh KC, Jung MH, arXiv preprint arXiv:1709.09879(2017).
Hu Y, Cao J, Deng J, Cui B, Tan M, Li J, Zhang H, React. Kinet. Mech. Cat., 106, 127 (2012)
Sewell GS, University of Cape Town(1996).
Folco F, Bologna(2013).
Rasko J, Kiss J, Appl. Catal. A: Gen., 287(2), 252 (2005)
Rasko J, Kiss J, Catal. Lett., 101(1-2), 71 (2005)
Sinharoy S, Levenson L, Thin Solid Films, 53, 31 (1978)
Ramqvist L, Hamrin K, Johansson G, Fahlman A, Nordling C, J. Phys. Chem. Solids, 30, 1835 (1969)
Seo G, Kim GJ, Catalyst-Basic Concept, Structure, and Function, Cheongmungak, Seoul, 2016.

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로