Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 1, 2019
Accepted September 24, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교
Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding
순천대학교 화학공학과, 57922 전남 순천시 매곡동 315 1코오롱인더스트리(주) Eco연구소 중앙기술원, 07793 서울시 강서구 마곡동로 110 코오롱 One&Only Tower
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 57922, Korea 1Kolon Industries Research Institute, 110, Magokdong-ro, Gangseo-gu, Seoul, 07793, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, December 2019, 57(6), 768-773(6), 10.9713/kcer.2019.57.6.768 Epub 3 December 2019
Download PDF
Abstract
고분자전해질연료전지(PEMFC)의 고분자막의 전기화학적 내구성을 평가하는 펜톤(Fenton)반응과 개회로전위 유지 (OCV Holding)방법에 의한 고분자 막의 열화 결과를 비교하였다. 펜톤 반응은 셀 밖에서 OCV Holding 방법보다 더 짧은 시간에 고분자막의 화학적인 내구를 평가할 수 있는 방법이다. 펜톤 반응은 과산화수소 30%, 철이온 80 ppm, 80 °C에서 24시간 실시하였다. OCV Holding은 90 °C, 상대습도 30%, OCV에서 168시간 시간 구동하였다. 펜톤 반응에 의해서는 고분자막의 내부에서 열화가 많이 발생하는 현상을 보였다. 반면에 OCV Holding에서는 표면과 내부 전체적인 열화에 의해 막 두께가 얇아졌다. 펜톤 반응에 의해 불소유출속도는 OCV Holding에 비해 10배 이상 높았다. 수소투과속도는 펜톤 반응 24시간에 약 30%증가하였다. OCV Holding에서는 24시간에 수소투과도가 감소하였고 이후 증가하는 경향을 보였다. 전체적으로 펜톤 반응과 OCV Holding에 의한 고분자막 열화는 차이가 있었다._x000D_
Abstrac
The Fenton reaction, which evaluates the electrochemical durability of polymer membranes of polymer electrolyte fuel cells (PEMFC), and the degradation of polymer membranes by OCV holding method are compared. The Fenton reaction is a method that can evaluate the chemical durability of the polymer membrane at outside the cell in a shorter time than the OCV Holding method. The Fenton reaction was carried out at 30% hydrogen peroxide, 10 ppm iron, and 80 °C for 24 hours. OCV Holding was driven at 90 °C, 30% relative humidity and OCV for 168 hours. The Fenton reaction caused a lot of degradation inside the polymer membrane. On the other hand, in OCV Holding, the membrane thickness was thinned by the entire surface and internal degradation. The fluorine emission rate was more than 10 times higher than that of OCV Holding due to the Fenton reaction. The hydrogen permeation rate increased about 30% at 24 hours of Fenton reaction. At OCV Holding, hydrogen permeability decreased after 24 hours and then increased. As a whole, there was a difference in a membranes deteriorated by Fenton reaction and OCV Holding.
Keywords
References
Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, , Chem. Rev., 107(10), 3904 (2007)
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Wilkinson DP, St-Pierre J, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222 (2006)
Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597 (2006)
Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98, 1766 (2013)
Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23 (2017)
Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66 (2013)
Chang Z, Yan H, Tian J, Pan H, Pu H, Polym. Degrad. Stabil., 138, 98 (2017)
Gummalla M, Atrazhev VV, Condit D, Cipollini N, Madden T, Kuzminyh NY, Weiss D, Burlatsky SF, J. Electrochem. Soc., 157(11), B1542 (2010)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)
Liang ZX, Chen WM, Liu JG, Wang SL, Zhou ZH, Li WZ, Sun GQ, Xin Q, J. Membr. Sci., 233(1-2), 39 (2004)
Wong KH, Kjeang E, J. Electrochem. Soc., 161(9), F823 (2014)
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Wilkinson DP, St-Pierre J, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222 (2006)
Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597 (2006)
Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98, 1766 (2013)
Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23 (2017)
Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66 (2013)
Chang Z, Yan H, Tian J, Pan H, Pu H, Polym. Degrad. Stabil., 138, 98 (2017)
Gummalla M, Atrazhev VV, Condit D, Cipollini N, Madden T, Kuzminyh NY, Weiss D, Burlatsky SF, J. Electrochem. Soc., 157(11), B1542 (2010)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)
Liang ZX, Chen WM, Liu JG, Wang SL, Zhou ZH, Li WZ, Sun GQ, Xin Q, J. Membr. Sci., 233(1-2), 39 (2004)
Wong KH, Kjeang E, J. Electrochem. Soc., 161(9), F823 (2014)