Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 27, 2019
Accepted September 2, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
매체형 전동밀의 실제 분쇄장에서 분쇄매체의 거동과 DEM 시뮬레이션의 비교연구
A Comparative Study for Grinding Media Behavior and DEM Simulation at Actual Grinding Zone on a Traditional Ball Mill
1창원대학교 메카트로닉스 융합부품소재 연구센터(ERC), 51140 경남 창원시 의창구 창원대학로 20 2창원대학교 대학원 금속신소재공학과, 51140 경남 창원시 의창구 창원대학로 20 3창원대학교 미래융합대학 메카융합공학과, 51140 경남 창원시 의창구 창원대학로 20
1Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University, 20, Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140, Korea 2Graduate School of Material Science Engineering, Changwon National University, 20, Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140, Korea 3Department of Mechanics Convergence, College of Engineering, Changwon National University, 20, Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongsangnam-do, 51140, Korea
hkchoi99@changwon.ac.kr
Korean Chemical Engineering Research, December 2019, 57(6), 804-811(8), 10.9713/kcer.2019.57.6.804 Epub 3 December 2019
Download PDF
Abstract
본 연구는 매체형 전동밀(전동 볼 밀)에서 매체선정에 관한 공정조건 최적화를 위하여, 직경과 재질이 각각 다른 3가지 종류의 분쇄매체를 이용, 매체의 움직임을 실제 촬영하고 DEM 시뮬레이션을 병행하여 비교 연구하였다. 시뮬레이션에서는 밀의 회전속도, 매체의 재질, 매체의 운동속도, 매체와 포트 벽면과의 마찰계수 등을 실제 실험조건과 동일하게 조건을 맞추었다. 다양한 종류의 분쇄매체의 움직임을 실제 촬영된 사진 및 시뮬레이션에서 해석된 스냅샷 사진 위에, 본 연구에서 정의한 분쇄장을 설정하여 해석함으로써 그 값을 정량적으로 측정하였다. 또한, 정량적으로 측정된 값과 분쇄시료의 변화된 모습을 관찰하여 그 상관관계를 검토하였다. 따라서 특정 실험조건에서 분쇄장에 가장 큰 영향을 주는 분쇄매체의 최적화를 제언 하고자 하였다.
This study was performed the real motion and DEM simulation of ball motion using three different types of grinding media with different size and materials in media formation for optimization of process conditions in a traditional ball mill (media ball mill). In the simulation, the rotational speed of the mill, the material of the medium, the velocity of the medium, and the coefficient of friction between the media and the wall of pot were fixed into the actual experimental conditions. The motion of various kinds of grinding media was quantitatively measured by setting the grinding zone defined in the present study on the photographs taken and the snapshot images analyzed in the simulation. In addition, we observed the quantitatively measured value and the changed morphology of the sample and examined the correlation. Therefore, it is suggested to optimize the grinding media which has the greatest influence on the grinding zone under specific experimental conditions.
Keywords
References
Blecher L, Kwade A, Schwedes J, Powder Technol., 86(1), 59 (1996)
Kwade A, Blecher L, Schwedes J, Powder Technol., 86(1), 69 (1996)
Watanabe H, Powder Technol., 104(1), 95 (1999)
Rose HE, Sullivan RME, “A Treatise on the Internal Mechanics of ball tube and Rod mills,” Constable, London 35-68 (1957).
Cho HC, Powder Engineering Summer Workshop, 16, 54 (2002)
Bor A, Batchuulun I, Jargalsaikhan B, Lee JH, Choi HK, Korean Chem. Eng. Res., 56(2), 191 (2018)
Bor A, Batjargal U, Jargalsaikhan B, Lee JH, Choi HK, Korean J. Mater. Res., 28(3), 148 (2018)
Ichinkhorloo B, Bor A, Uyanga B, Lee J, Choi H, Korean J. Mater. Res., 26(11), 611 (2016)
Uyanga B, Amgalan B, Batchuluun I, Lee J, Choi H, Korean Chem. Eng. Res., 55(4), 546 (2017)
Sakuragi S, Amgalan B, Lee J, Choi H, Par. Aerosol Res., 11(1), 9 (2015)
Bor A, Sakuragi S, Lee J, Choi H, Korean J. Mater. Res., 25(6), 305 (2015)
Christine F, Arno K, Chem. Soc. Rev., 42, 7660 (2013)
Khoa HX, Bae S, Bae S, Kim B, Kim J, J. Kor. Powd. Met. Inst., 21, 155 (2014)
Rosenkranz S, Breitung-Faes S, Kwade A, Powder Technol., 212, 234 (2011)
Choi H, Lee JH, Choi J, Par. Aerosol Res., 9(1), 1 (2013)
Kwade A, Blecher L, Schwedes J, Powder Technol., 86(1), 69 (1996)
Watanabe H, Powder Technol., 104(1), 95 (1999)
Rose HE, Sullivan RME, “A Treatise on the Internal Mechanics of ball tube and Rod mills,” Constable, London 35-68 (1957).
Cho HC, Powder Engineering Summer Workshop, 16, 54 (2002)
Bor A, Batchuulun I, Jargalsaikhan B, Lee JH, Choi HK, Korean Chem. Eng. Res., 56(2), 191 (2018)
Bor A, Batjargal U, Jargalsaikhan B, Lee JH, Choi HK, Korean J. Mater. Res., 28(3), 148 (2018)
Ichinkhorloo B, Bor A, Uyanga B, Lee J, Choi H, Korean J. Mater. Res., 26(11), 611 (2016)
Uyanga B, Amgalan B, Batchuluun I, Lee J, Choi H, Korean Chem. Eng. Res., 55(4), 546 (2017)
Sakuragi S, Amgalan B, Lee J, Choi H, Par. Aerosol Res., 11(1), 9 (2015)
Bor A, Sakuragi S, Lee J, Choi H, Korean J. Mater. Res., 25(6), 305 (2015)
Christine F, Arno K, Chem. Soc. Rev., 42, 7660 (2013)
Khoa HX, Bae S, Bae S, Kim B, Kim J, J. Kor. Powd. Met. Inst., 21, 155 (2014)
Rosenkranz S, Breitung-Faes S, Kwade A, Powder Technol., 212, 234 (2011)
Choi H, Lee JH, Choi J, Par. Aerosol Res., 9(1), 1 (2013)