Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 1, 2019
Accepted August 21, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
붕소가 도핑된 리튬이온전지용 양극 활물질(LiNi0.90Co0.05Ti0.05O2)의 전기화학적 특성
Electrochemical Properties of Boron-doped Cathode Materials (LiNi0.90Co0.05Ti0.05O2) for Lithium-ion Batteries
충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, December 2019, 57(6), 832-840(9), 10.9713/kcer.2019.57.6.832 Epub 3 December 2019
Download PDF
Abstract
양극 활물질의 전기화학적 성능을 개선하기 위하여, 농도 구배형 전구체를 사용한 boron-doped LiNi0.90Co0.05Ti0.05O2를 합성하였다. 제조된 양극 활물질의 특성은 XRD, SEM, EDS, PSA, ICP-OES 및 전기전도도 측정을 통하여 분석하였다. 초기 충·방전 용량, 사이클, 순환전압전류, 율속 특성 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. 붕소가 0.5 mol% 도핑된 LiNi0.90Co0.05Ti0.05O2 양극 활물질은 2.7~4.3 V (vs. Li/Li+)의 전압 범위에서 0.5 C의 전류를 인가했을 때, 187 mAh/g의 용량을 보이며 50 사이클 이후 94.7%의 용량 유지율을 보였다. 상대적으로 고전압인 2.7~4.5 V(vs. Li/Li+)의 전압 범위에서는 200 mAh/g의 높은 용량을 보이며 50 사이클 이후 80.5%의 용량 유지율을 나타냈다.
To improve the electrochemical performances of the cathode materials, boron-doped LiNi0.90Co0.05Ti0.05O2 were synthesized by using concentration gradient precursor. The characteristics of the prepared cathode materials were analyzed by XRD, SEM, EDS, PSA, ICP-OES and electrical conductivity measurement. The electrochemical performances were investigated by initial charge/discharge capacity, cycle stability, C-rate, cyclic voltammetry and electrochemical impedance spectroscopy. The cathode material with 0.5 mol% boron exhibited a capacity of 187 mAh/g (0.5 C) in a voltage range of 2.7~4.3 V(vs. Li/Li+), and an capacity retention of 94.7% after 50 cycles. In the relatively high voltage range of 2.7~4.5 V(vs. Li/Li+), it showed a high capacity of 200 mAh/g and capacity retention of 80.5% after 50 cycles.
References
Lain MJ, J. Power Sources, 97-98, 736 (2001)
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243 (2011)
Lu Z, MacNeil DD, Dahn JR, Electrochem. Solid State Lett., 4, A191 (2001)
Fergus JW, J. Power Sources, 195(4), 939 (2010)
Liu W, Oh P, Liu X, Lee M, Cho W, Chae S, Kim Y, Cho J, Angew. Chem.-Int. Edit., 54, 4440 (2015)
Mohanty D, Dahlberg KD, King M, David LA, Sefat AS, Wood DL, Daniel C, Dhar S, Mahajan V, Lee M, Albano F, Scientific Reports, 6, 26532 (2016)
Liu L, Sun K, Zhang N, Yang T, J. Solid State Ionics, 180, 198 (2009)
Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107 (2017)
Park K, Jung H, Kuo L, Kaghazchi P, Yoon CS, Sun Y, Adv. Eng. Mater., 8, 180120 (2018)
Dou J, Kang X, Wumaier T, Yu H, Hua N, Han Y, Xu G, J. Solid State Electrochem., 16, 1481 (2012)
Liu J, Wang S, Ding Z, Zhou R, Xia Q, Zhang J, Chen L, Wei W, Wang P, ACS Appl. Mater. Interfaces, 8, 18008 (2016)
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J, Adv. Eng. Mater., 8, 170202 (2018)
Ko HS, Park HW, Kim GJ, Lee JD, Korean J. Chem. Eng., 36(4), 620 (2019)
Ju SH, Jang HC, Kang YC, Electrochim. Acta, 52(25), 7286 (2007)
Liu S, Xiong L, He C, J. Power Sources, 261, 285 (2014)
Sun HH, Choi W, Lee JK, Oh IH, Jung HG, J. Power Sources, 275, 877 (2015)
Ko HS, Park HW, Lee JD, Korean Chem. Eng. Res., 56(5), 718 (2018)
Yu QP, Chen ZT, Xing LD, Chen DR, Rong HB, Liu QF, Li WS, Electrochim. Acta, 176, 919 (2015)
Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K, J. Power Sources, 112(1), 41 (2002)
Julien C, Nazri GA, Rougier A, Solid State Ionics, 135, 121 (2000)
Park DY, Park DY, Lan Y, Lim YS, Kim MS, J. Ind. Eng. Chem., 15(4), 588 (2009)
Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243 (2011)
Lu Z, MacNeil DD, Dahn JR, Electrochem. Solid State Lett., 4, A191 (2001)
Fergus JW, J. Power Sources, 195(4), 939 (2010)
Liu W, Oh P, Liu X, Lee M, Cho W, Chae S, Kim Y, Cho J, Angew. Chem.-Int. Edit., 54, 4440 (2015)
Mohanty D, Dahlberg KD, King M, David LA, Sefat AS, Wood DL, Daniel C, Dhar S, Mahajan V, Lee M, Albano F, Scientific Reports, 6, 26532 (2016)
Liu L, Sun K, Zhang N, Yang T, J. Solid State Ionics, 180, 198 (2009)
Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107 (2017)
Park K, Jung H, Kuo L, Kaghazchi P, Yoon CS, Sun Y, Adv. Eng. Mater., 8, 180120 (2018)
Dou J, Kang X, Wumaier T, Yu H, Hua N, Han Y, Xu G, J. Solid State Electrochem., 16, 1481 (2012)
Liu J, Wang S, Ding Z, Zhou R, Xia Q, Zhang J, Chen L, Wei W, Wang P, ACS Appl. Mater. Interfaces, 8, 18008 (2016)
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J, Adv. Eng. Mater., 8, 170202 (2018)
Ko HS, Park HW, Kim GJ, Lee JD, Korean J. Chem. Eng., 36(4), 620 (2019)
Ju SH, Jang HC, Kang YC, Electrochim. Acta, 52(25), 7286 (2007)
Liu S, Xiong L, He C, J. Power Sources, 261, 285 (2014)
Sun HH, Choi W, Lee JK, Oh IH, Jung HG, J. Power Sources, 275, 877 (2015)
Ko HS, Park HW, Lee JD, Korean Chem. Eng. Res., 56(5), 718 (2018)
Yu QP, Chen ZT, Xing LD, Chen DR, Rong HB, Liu QF, Li WS, Electrochim. Acta, 176, 919 (2015)
Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K, J. Power Sources, 112(1), 41 (2002)
Julien C, Nazri GA, Rougier A, Solid State Ionics, 135, 121 (2000)
Park DY, Park DY, Lan Y, Lim YS, Kim MS, J. Ind. Eng. Chem., 15(4), 588 (2009)