ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 1, 2019
Accepted August 21, 2019
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

기상 포름알데히드 반응을 위한 활성탄에 담지한 P-V-Mo 촉매의 조성에 따른 영향

Effects of Composition in P-V-Mo Catalysts Supported on Activated Carbon for Vapor Formaldehyde Reaction

한국에너지기술연구원 기후변화연구본부, 34129 대전광역시 유성구 가정로 152 1한국원자력연구원 양자광학연구부, 34057 대전광역시 유성구 대덕대로 989번길 111 2충남대학교 응용화학공학과, 34134 대전광역시 유성구 대학로 99
Climate Change Research Division, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea 1Quantum Optics Division, Korea Atomic Energy Research Institute (KAERI), 111 989Beon-Gil, Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea 2Chemical Engineering and Applied Chemistry, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Korean Chemical Engineering Research, December 2019, 57(6), 891-897(7), 10.9713/kcer.2019.57.6.891 Epub 3 December 2019
downloadDownload PDF

Abstract

본 연구에서는 Phosphoric acid (H3PO4)와 Vanadium (V) pentoxide (V2O5), Molybdenum (VI) trioxide (MoO3)으로 부터 조성을 달리하여, heteropoly acid의 PVMo 촉매를 활성탄 지지체에 담지하였다. 촉매의 반응성 조사를 위해, 기상의 포름알데히드를 140 °C 의 온도에서 1시간 동안 반응시켰다. 반응전후의 촉매는 XRD와 BET 분석을 수행하였으며, 촉매의 산도 측정을 위해 NH3-TPD을 수행하였다. 포름알데히드의 전환율은 MoO3와 H3PO4 성분이 감소하고 V2O5 성분이 증가함에 따라 증가하였다. 대부분의 촉매에서 비교적 낮은 촉매 결정성이 관찰되었으며, 비표면적은 반응후 다소 감소하는 것으로 나타났다. NH3-TPD 분석 결과, 400 °C~500 °C 에 해당하는 강한 산점의 비율이 MoO3와 H3PO4 성분의 함량이 감소하고 V2O5 성분의 함량이 증가함에 따라 증가하였다. 이러한 강한 산점의 비율이 포름알데히드의 전환율에 영향을 미치는 것으로 나타났다.
In this study, heteropoly acid PVMo catalysts were supported on activated carbon with various composition of phosphoric acid (H3PO4), vanadium (V) pentoxide (V2O5) and molybdenum (VI) trioxide (MoO3). Catalytic performance was examined at 140 °C for 1hour in vapor formaldehyde. XRD and BET analyses were carried with the catalysts before and after the reaction. Formaldehyde conversion was increased with decreasing Mo and H3PO4 content and increasing V2O5 content. Acidity of the catalysts was investigated with NH3-TPD. Crystallinity of the catalysts was relatively low, and surface area was decreased after the reaction. In NH3-TPD result, the ratio of strong acid site corresponding to NH3 desorption between 400 °C and 500 °C was increased by decreasing MoO3 and H3PO4 content and increasing V2O5 content. Therefore, it was found that the strong acid site could affect the catalytic reactivity in vapor formaldehyde conversion.

References

Emig G, Kern F, Ruf S, Warnecke HJ, Appl. Catal. A: Gen., 118(1), L17 (1994)
Kern F, Ruf S, Emig G, Appl. Catal. A: Gen., 150(1), 143 (1997)
Nakao H, Yutaka K, Arata C, Patent No. 6,332, 913 B2(2018).
Boudjema S, Vispe E, Choukchou-Braham A, Mayoral JA, Bachira R, Fraileb JM, RSC Adv., 5, 6853 (2015)
Sopa A, Waclaw-Held A, Grossy M, Pijanka J, Nowinska K, Appl. Catal. A: Gen., 285(1-2), 119 (2005)
Sawant DP, Vinu A, Justus J, Srinivasu P, Halligudi SB, J. Mol. Catal. A-Chem., 276(1-2), 150 (2007)
Chimienti ME, Pizzio LR, Caceres CV, Blanco MN, Appl. Catal. A: Gen., 208(1-2), 7 (2001)
Sharma P, Patel A, Appl. Surf. Sci., 255(17), 7635 (2009)
Ressler T, Dorn U, Walter A, Schwarz S, Hahn AHP, J. Catal., 275(1), 1 (2010)
Rafiee E, Shahbazi F, Joshaghani M, Tork F, J. Mol. Catal. A-Chem., 242(1-2), 129 (2005)
Kokorin AI, Kulak AI, Tomskii IS, Rufov Y, Russ. J. Phys. Chem., 7, 255 (2013)
Kalantar-Zadeh K, Wlodarski W, Tang J, Wang M, Wang KL, Shailos A, Galatsis K, Kaner RB, Kojima R, Strong V, Lech A, RSC., 2, 429 (2010)
Salavati H, Rasouli N, Mater. Res. Bull., 46(11), 1853 (2011)
Wu XL, Xiao M, Meng YZ, Lu YX, J. Mol. Catal. A-Chem., 238(1-2), 158 (2005)
Bezerra FA, Altino HON, Soares RR, J. Braz. Chem. Soc., 30, 1025 (2019)
Suppiah D, Komar A, Hamid S, J. Therm. Anal. Calorim., 129, 1367 (2017)
Chary KVR, Bhaskar T, Kishan G, Reddy KR, J. Phys. Chem. B, 105(19), 4392 (2001)
Zhao H, Zuo CC, Yang D, Li CS, Zhang SJ, Ind. Eng. Chem. Res., 55(50), 12693 (2016)
Yin XL, Han HM, Gunji I, Endou A, Ammal SSC, Kubo M, Miyamoto A, J. Phys. Chem. B, 103(22), 4701 (1999)
Kim SY, Jermy BR, Bineesh KV, Lim DO, Kim KH, Park DW, Korean Chem. Eng. Res., 47(3), 275 (2009)
Mitran G, Neatu F, Pavel OD, Trandafir MM, Florea M, Materials, 12, 748 (2019)
Yu X, Bao Q, Wang Z, Zhang Y, Liu B, Ma H, Wang Y, Chem. Res. Chin. Univ., 34, 485 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로