Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 16, 2019
Accepted October 8, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
실리카로 코팅된 흑연을 이용한 리튬 이차전지용 흑연/실리콘/피치 복합소재의 전기화학적 특성
Electrochemical Characteristics of Graphite/Silicon/Pitch Anode Composites for Lithium Ion Batteries using Silica-Coated Graphite
충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, February 2020, 58(1), 142-149(8), 10.9713/kcer.2020.58.1.142 Epub 4 February 2020
Download PDF
Abstract
본 연구에서는 인조흑연의 낮은 이론용량을 개선하기 위하여 음극소재로서 흑연/실리콘/피치 복합소재의 전기화학_x000D_
적 성능을 조사하였다. 구형의 인조 흑연 표면을 polyvinylpyrrolidone (PVP) 양친성 물질로 코팅한 후 실리카를 성장시켜 흑연/실리카 소재를 합성하였으며, 석유계 피치 코팅과 마그네슘 열 환원법을 통해 흑연/실리콘/피치 복합소재를 제조하였다. 흑연/실리콘/피치 복합소재의 전극은 poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC), polyacrylic acid (PAA) 바인더에 따라 제조하였으며, 다양한 전해액과 첨가제를 이용하여 전지를 조립하였다. 흑연/실리콘/피치 복합소재는 X-ray diffraction (XRD), scanning electron microscope (SEM)와 thermogravimetric analyzer (TGA)를 통해 물리적 특성을 분석하였으며, 전기화학적 특성은 충·방전 사이클, 율속, 순환전압전류, 임피던스 테스트를 통해 조사하였다. 흑연/실리콘/피치 복합소재는 흑연 : 실리카 : 피치 = 1 : 4 : 8일 때 높은 사이클 안정성을 보였다. PAA 바인더를 사용하여 제조된 전극은 높은 용량과 안정성을 보였으며, EC:DMC:EMC 전해액을 사용하였을 때 719 mAh/g의 높은 초기 용량과 우수한 사이클 안정성 나타내었다. 또한 vinylene carbonate (VC) 첨가시에 2 C/0.1 C 일 때 77% 용량 유지율과 0.1 C/0.1 C 일 때 88% 용량 회복을 나타냄을 확인하였다.
In this study, the electrochemical performance of Graphite/Silicon/Pitch composites as anode material was investigated to improve the low theoretical capacity of artificial graphite. Spherical artificial graphite surface was coatedwith polyvinylpyrrolidone (PVP) amphiphiles material to synthesize Graphite/Silica material by silica islands growth. The Graphite/Silicon/Pitch composites were prepared by petroleum pitch coating and magnesiothermic reduction. The Graphite/Silicon/Pitch composite electrodes manufactured using poly(vinylidene fluoride) (PVDF), carboxymethyl cellulose (CMC) and polyacrylic acid (PAA) binders. The coin type half cell was assembled using various electrolytes and additives. The Graphite/Silicon/Pitch composites were analysed by X-ray diffraction (XRD), scanning electron microscope (SEM) and a thermogravimetric analyzer (TGA). The electrochemical characteristics of Graphite/Silicon/Pitch composite were investigated by constant current charge/discharge, rate performance, cyclic voltammetry and electrochemical impedance spectroscopy. The Graphite/Silicon/Pitch composites showed high cycle stability at a graphite/silica/pitch ratio (1:4:8 wt%). When the electrode is prepared using PAA binder, the high capacity and stability is obtained. The coin type half cell assembled using EC: DMC: EMC electrolyte showed high initial capacity (719 mAh/g) and excellent cycle stability. The rate performance has an capacity retention (77%) at 2 C/0.1 C and an capacity recovery (88%) at 0.1 C / 0.1 C when the vinylene carbonate (VC) was added.
References
Ko HS, Park HW, Lee JD, Korean Chem. Eng. Res., 56(5), 718 (2018)
Jo YJ, Lee JD, Korean Chem. Eng. Res., 56(3), 320 (2018)
Long W, Fang B, Ignaszak A, Wu Z, Wang YJ, Wilkinson D, Chem. Soc. Rev., 46, 7176 (2017)
Bao Q, Huang YH, Lan CK, Chen BH, Duh JG, Electrochim. Acta, 173, 82 (2015)
Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195 (2017)
Wachtler M, Besenhard JO, Winter M, J. Power Sources, 94(2), 189 (2001)
Wu H, Chan G, Choi JW, Ryu L, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y, Nat. Nanotechnol., 7(5), 310 (2012)
Antitomaso P, Fraisse B, Stievano L, Biscaglia S, Perrot DA, Girard P, Sougrati MT, Monconduit L, J. Mater. Chem. A, 5, 6546 (2017)
Sohn M, Kim DS, Park HI, Kim JH, Kim H, Electrochim. Acta, 196, 197 (2016)
Huang L, Wei HB, Ke FS, Fan XY, Li JT, Sun SG, Electrochim. Acta, 54(10), 2693 (2009)
Kim H, Seo M, Park MH, Cho J, Angew. Chem.-Int. Edit., 49, 2146 (2010)
Lee SH, Lee JD, Korean Chem. Eng. Res., 57(1), 118 (2019)
Jeena MT, Bok T, Kim SH, Park S, Kim JY, Park S, Ryu JH, Nanoscale, 8, 9245 (2016)
Wang W, Yang S, J. Alloy. Compd., 695, 3249 (2017)
Cai Y, Allan SM, Sandhage KH, J. Am. Ceram. Soc., 88(7), 2005 (2005)
Choi S, Kim K, Nam J, Shim SE, Carbon, 60, 254 (2013)
Lee HY, Lee JD, Korean Chem. Eng. Res., 54(4), 459 (2016)
Yang Y, Wang Z, Zhou Y, Guo H, Li X, Mater. Lett., 199, 84 (2017)
Komaba K, Yabuuchi N, Ozeki T, Han ZJ, Shimomura K, Yui H, Katayama Y, Miura T, J. Phys. Chem., 116, 1380 (2012)
Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K, J. Phys. Chem., 115, 13487 (2011)
Chen LB, Wang K, Xie XH, Xie JY, J. Power Sources, 174(2), 538 (2007)
Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, et al., Energy Storage Materials, 6, 26 (2017)
Jo YJ, Lee JD, Korean Chem. Eng. Res., 56(3), 320 (2018)
Long W, Fang B, Ignaszak A, Wu Z, Wang YJ, Wilkinson D, Chem. Soc. Rev., 46, 7176 (2017)
Bao Q, Huang YH, Lan CK, Chen BH, Duh JG, Electrochim. Acta, 173, 82 (2015)
Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195 (2017)
Wachtler M, Besenhard JO, Winter M, J. Power Sources, 94(2), 189 (2001)
Wu H, Chan G, Choi JW, Ryu L, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y, Nat. Nanotechnol., 7(5), 310 (2012)
Antitomaso P, Fraisse B, Stievano L, Biscaglia S, Perrot DA, Girard P, Sougrati MT, Monconduit L, J. Mater. Chem. A, 5, 6546 (2017)
Sohn M, Kim DS, Park HI, Kim JH, Kim H, Electrochim. Acta, 196, 197 (2016)
Huang L, Wei HB, Ke FS, Fan XY, Li JT, Sun SG, Electrochim. Acta, 54(10), 2693 (2009)
Kim H, Seo M, Park MH, Cho J, Angew. Chem.-Int. Edit., 49, 2146 (2010)
Lee SH, Lee JD, Korean Chem. Eng. Res., 57(1), 118 (2019)
Jeena MT, Bok T, Kim SH, Park S, Kim JY, Park S, Ryu JH, Nanoscale, 8, 9245 (2016)
Wang W, Yang S, J. Alloy. Compd., 695, 3249 (2017)
Cai Y, Allan SM, Sandhage KH, J. Am. Ceram. Soc., 88(7), 2005 (2005)
Choi S, Kim K, Nam J, Shim SE, Carbon, 60, 254 (2013)
Lee HY, Lee JD, Korean Chem. Eng. Res., 54(4), 459 (2016)
Yang Y, Wang Z, Zhou Y, Guo H, Li X, Mater. Lett., 199, 84 (2017)
Komaba K, Yabuuchi N, Ozeki T, Han ZJ, Shimomura K, Yui H, Katayama Y, Miura T, J. Phys. Chem., 116, 1380 (2012)
Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K, J. Phys. Chem., 115, 13487 (2011)
Chen LB, Wang K, Xie XH, Xie JY, J. Power Sources, 174(2), 538 (2007)
Jaumann T, Balach J, Langklotz U, Sauchuk V, Fritsch M, et al., Energy Storage Materials, 6, 26 (2017)