Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 15, 2019
Accepted December 13, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
후코이단에 의한 PEMFC 고분자막의 열화 감소
Decrease of Membrane Degradation in PEMFC by Fucoidan
순천대학교 화학공학과, 57922 전라남도 순천시 중앙로 235 1㈜CNL Energy, 57922 전라남도 순천시 중앙로 235
Department of Chemical Engineering, Sunchon National University, 255, Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Korea 1CNL Energy Co, 255, Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, February 2020, 58(1), 59-63(5), 10.9713/kcer.2020.58.1.59 Epub 4 February 2020
Download PDF
Abstract
PEMFC 고분자막의 내구성을 향상시키기 위해서 Radical 제거제가 사용되고 있다. 본 연구에서는 라디칼 제거제로서 해조류에서 추출한 후코이단이 고분자막의 전기화학적 열화를 방지하는지 Fenton 실험과 가속내구 평가방법(OCV Holding) 실험을 통해 검토하였다. 후코이단은 항산화 효과가 있어 과산화수소와 산소 라디칼로부터 고분자막을 보호해 열화속도를 1/10로 감소시켰다. 후코이단이 라디칼 제거제로 사용되는 MnO2보다 효과적임을 보였다. PEMFC셀에서 OCV Holding 실험한 결과, 후코이단이 고분자막의 수소투과도를 12% 감소시켰고, 성능은 라디칼 제거제가 없을 때 보다 29.1% 감소시켜 PEMFC 셀에서도 라디칼 제거제의 역할을 함을 확인하였다. 그리고 후코이단을 Anode쪽보다 Cathode 쪽 전극 이오노머에 넣은 것이 더 효과적임을 확인하였다.
Radical scavenger is used to improve the durability of PEMFC polymer membrane. In this study, we investigated whether fucoidan extracted from seaweed as a radical scavenger prevents electrochemical degradation through Fenton and OCV Holding experiments. Fucoidan has an antioxidant effect, protecting the polymer membrane from hydrogen peroxide and oxygen radicals, reducing the degradation rate to 1/10. Fucoidan has been shown to be more effective than MnO2, which is used as a radical scavenger. In the PEMFC cell, the accelerated durability evaluation method (OCV Holding) showed that fucoidan reduced the hydrogen permeability of the polymer membrane by 12% and enhanced the performance by 29.1% compared to without radical scavenger. And fucoidan was found to be more effective in the cathode side ionomer than the anode side.
References
Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, , Chem. Rev., 107(10), 3904 (2007)
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Wilkinson DP, St-Pierre J, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222 (2006)
Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597 (2006)
Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98, 1766 (2013)
Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23 (2017)
Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66 (2013)
Cha SH, Ahn MW, Lee JS, Kim YS, Kim DU, Byun TG, Park KP, Korean Chem. Eng. Res., 50(4), 604 (2012)
Tatiana NZ, Nataliiya MS, Irina BP, Vladimir VI, Andrey SS, Elena VS, Lyudmila AE, Carbohydr. Res., 322, 32 (1999)
Fortun A, Khalil A, Gagne D, Douziech N, Kuntz C, Dupuis G, Atherosclerosis, 156, 11 (2001)
Collis S, Fisher AM. Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J, Thtombosis Research, 64(2), 143 (1991)
Mauray S, Raucourt E, Talbot J, Jozefowicz M, Fis cher A, Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387(1-2), 184-194(1998).
Saito A, Yoneda M, Yokohama S, Okada M, Haneda M, Nakamura K, Hepatology Research, 35(3), 190 (2006)
Yao Y, Liu J, Liu W, Zhao M, Wu B, Gu J, Zou Z, Energy Environ. Sci., 7, 3362 (2014)
Ohguri N, Nosaka AY, Nosaka Y, J. Power Sources, 195(15), 4647 (2010)
Liu W, Zuckerbrod D, J. Electrochem. Soc., 152(6), A1165 (2005)
Kundu S, Fowler MW, Simon LC, Abouatallah R, Beydokhti N, J. Power Sources, 183(2), 619 (2008)
Zhang L, Mukerjee S, J. Electrochem. Soc., 153(6), A1062 (2006)
Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191 (2005)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31, 1838 (2006)
Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487 (2011)
Wilkinson DP, St-Pierre J, Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
Collier A, Wang HJ, Yuan XZ, Zhang JJ, Wilkinson DP, Int. J. Hydrog. Energy, 31(13), 1838 (2006)
U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
Wang F, Tang HL, Pan M, Li DX, Int. J. Hydrog. Energy, 33(9), 2283 (2008)
Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, Iriyama Y, Abe T, Ogumi Z, J. Power Sources, 158(2), 1222 (2006)
Kim T, Lee J, Cho G, Park K, Korean Chem. Eng. Res., 44(6), 597 (2006)
Pearman BP, Mohajeri N, Slattery DK, Hampton MD, Seal S, Cullen DA, Polym. Degrad. Stabil., 98, 1766 (2013)
Hao JK, Jiang YY, Gao XQ, Xie F, Shao ZG, Yi BL, J. Membr. Sci., 522, 23 (2017)
Zhu Y, Pei SP, Tang JK, Li H, Wang L, Yuan WZ, Zhang YM, J. Membr. Sci., 432, 66 (2013)
Cha SH, Ahn MW, Lee JS, Kim YS, Kim DU, Byun TG, Park KP, Korean Chem. Eng. Res., 50(4), 604 (2012)
Tatiana NZ, Nataliiya MS, Irina BP, Vladimir VI, Andrey SS, Elena VS, Lyudmila AE, Carbohydr. Res., 322, 32 (1999)
Fortun A, Khalil A, Gagne D, Douziech N, Kuntz C, Dupuis G, Atherosclerosis, 156, 11 (2001)
Collis S, Fisher AM. Tapon-Bretaudiere J, Boisson C, Durand P, Jozefonvicz J, Thtombosis Research, 64(2), 143 (1991)
Mauray S, Raucourt E, Talbot J, Jozefowicz M, Fis cher A, Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387(1-2), 184-194(1998).
Saito A, Yoneda M, Yokohama S, Okada M, Haneda M, Nakamura K, Hepatology Research, 35(3), 190 (2006)
Yao Y, Liu J, Liu W, Zhao M, Wu B, Gu J, Zou Z, Energy Environ. Sci., 7, 3362 (2014)
Ohguri N, Nosaka AY, Nosaka Y, J. Power Sources, 195(15), 4647 (2010)
Liu W, Zuckerbrod D, J. Electrochem. Soc., 152(6), A1165 (2005)
Kundu S, Fowler MW, Simon LC, Abouatallah R, Beydokhti N, J. Power Sources, 183(2), 619 (2008)
Zhang L, Mukerjee S, J. Electrochem. Soc., 153(6), A1062 (2006)