Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 21, 2019
Accepted November 12, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Metal Copper Clad Laminate (MCCL)의 고방열 특성을 위한 Epoxy/BN 복합체 개발
Development of Epoxy/Boron Nitride Composites for High Heat Dissipation of Metal Copper Clad Laminate (MCCL)
광운대학교 화학공학과, 01897 서울특별시 노원구 광운로 20
Department of Chemical Engineering, Kwangwoon University, 20, Gwangun-ro, Nowon-gu, Seoul, 01897, Korea
jschoi@kw.ac.kr
Korean Chemical Engineering Research, February 2020, 58(1), 64-68(5), 10.9713/kcer.2020.58.1.64 Epub 4 February 2020
Download PDF
Abstract
본 연구에서는, 열 전도성 충진제로 충진 된 에폭시복합체를 사용하여 금속 구리판에 이를 코팅한 기판이 제조되었다. 에폭시 복합체의 열전도도를 향상시키기 위해서는 에폭시 매트릭스에 있는 전도성 필러의 최적 분산을 통한 전도성 네트워크를 형성하게 하고, 인접한 필러 입자들 사이에서 열 저항 접합의 수를 감소시키는 것이 중요한 요소이다. 이는 에폭시는 열전도도가 0.2~0.3W 밖에 안되기 때문에 높은 열전도도를 유지하기 위해선 열전도성 필러가 서로 연결되어 입자간에 갭이 적어야 열저항을 감소시킬수 있기 때문이다. 본 연구의 목적은 에폭시 수지에 Al2O3와 Boron Nitride (BN) 충진제를 균일하게 분산시켜 고방열 에폭시 복합체를 개발하는 데 있다. 그 결과, Al2O3와 Boron nitride Filler가 에폭시 수지 매트릭스에 서로 연결되어 에폭시 수지와 알루미나/Boron nitride 하이브리드 필러 간에 계면 공극 없이 분산되어 열전도도 특성 향상을 확인 할 수 있었고, 표면 처리한 s-BN 필러가 에폭시 수지의 매트릭스의 계면접착력을 향상시켰으며, 계면 공극을 최소화함에 따라 높은 열전도도 특성을 확보 할 수 있었다.
In this study, metal copper clad laminate can be prepared using epoxy composite filled with thermally conductive fillers. In order to improve the thermal conductivity of epoxy composites, it is important factor to form conductive networks through appropriate packing of conductive fillers in epoxy composite matrix and to decrease the amount of thermally resistant junctions involving a epoxy composite matrix layer between adjacent filler units. This is because epoxy has a thermal conductivity of only 0.2-0.3W, so in order to maintain high thermal conductivity, thermally conductive fillers are connected to each other, so that the gap between particles can be reduced to reduce thermal resistance. The purpose of this study is to find way to achieve highly thermally conductive in the epoxy composite matrix filled with Al2O3 and Boron Nitride(BN) filler by filler loading and uniform dispersion. As a results, the use of Al2O3/BN hybrid filler in epoxy matrix was found to be effective in increasing thermal conductivity of epoxy composite matrix due to the enhanced connectivity offered by more continuous thermally conductive pathways and uniform dispersion without interfacial voids in epoxy composite matrix. In addition, surface treatmented s-BN improves the filler dispersion and adhesion between the filler and the epoxy matrix, which can significantly decrease the interfacial thermal resistance and increase the thermal conductivity of epoxy composite matrix.
References
Zhou WY, Yu DM, Min C, Fu YP, Gu MS, J. Appl. Polym. Sci., 112(3), 1695 (2009)
Kalaprasad G, Pradeep P, Mathew G, Pavithran C, Thomas S, Compos. Sci. Technol., 60(16), 2967 (2000)
Zhou WY, Qi SH, Zhao HZ, Liu NL, Polym. Compos., 28(1), 23 (2007)
Lee GW, Park M, Kim J, Lee JI, Yoon HG, Compos. Pt. A-Appl. Sci. Manuf., 37, 727 (2006)
Kim KH, Kim JH, Ceram. Int., 40, 5181 (2014)
Wang Z, Lizuka T, Kozako M, Ohki Y, Tanaka T, IEEE Trans. Dielectr. Electr. Insul., 17, 653 (2010)
Kozako M, Okazaki Y, Hikita M, Tanaka T, IEEE Int’l. Conf. Solid Dielectr. 1-4(2010).
Miyazaki Y, Nishiyama T, Takahashi H, Katagiti JI, Takezawa Y, IEEE CEIDP 2009 annual report, 638-641.
Kim KH, Kim MJ, Hwang YS, Kim JH, Ceram. Int., 40, 2047 (2014)
Imai T, Sawa F, Ozaki T, Shimizu T, Kuge SI, Kozako M, Tanaka T, IEEJ Trans. Fundamentals and Materials, 126 84-91(2006).
Wattanakul K, Manuspiya H, Yanumet N, J. Appl. Polym. Sci., 119(6), 3234 (2011)
Kalaprasad G, Pradeep P, Mathew G, Pavithran C, Thomas S, Compos. Sci. Technol., 60(16), 2967 (2000)
Zhou WY, Qi SH, Zhao HZ, Liu NL, Polym. Compos., 28(1), 23 (2007)
Lee GW, Park M, Kim J, Lee JI, Yoon HG, Compos. Pt. A-Appl. Sci. Manuf., 37, 727 (2006)
Kim KH, Kim JH, Ceram. Int., 40, 5181 (2014)
Wang Z, Lizuka T, Kozako M, Ohki Y, Tanaka T, IEEE Trans. Dielectr. Electr. Insul., 17, 653 (2010)
Kozako M, Okazaki Y, Hikita M, Tanaka T, IEEE Int’l. Conf. Solid Dielectr. 1-4(2010).
Miyazaki Y, Nishiyama T, Takahashi H, Katagiti JI, Takezawa Y, IEEE CEIDP 2009 annual report, 638-641.
Kim KH, Kim MJ, Hwang YS, Kim JH, Ceram. Int., 40, 2047 (2014)
Imai T, Sawa F, Ozaki T, Shimizu T, Kuge SI, Kozako M, Tanaka T, IEEJ Trans. Fundamentals and Materials, 126 84-91(2006).
Wattanakul K, Manuspiya H, Yanumet N, J. Appl. Polym. Sci., 119(6), 3234 (2011)