Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 12, 2019
Accepted August 6, 2019
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Experimental Measurement and Correlation of two α-Amino Acids Solubility in Aqueous Salts Solutions from 298.15 to 323.15 K
1Department of Chemistry, Faculty of Science, Northern Border University, Arar, Kingdom of Saudi Arabia 2Department of Chemistry, Faculty of Science and Technology, Omdurman Islamic University, Sudan 3Institut Préparatoire aux Etudes Scientifiques et Techniques 99/UR/1201 Unité de Recherches de Physico-Chimie Moléculaire, Université de Carthage, Sudan, Saudi Arabia
Korean Chemical Engineering Research, February 2020, 58(1), 98-105(8), 10.9713/kcer.2020.58.1.98 Epub 4 February 2020
Download PDF
Abstract
By the gravimetric method at atmospheric pressure, the solubility of two α-amino acids was resolved over temperatures from (293.15 to 323.15) K. The α-amino acids studied were L-arginine and L-histidine. Results showed a salting-out effect on the solubility of the tested amino compounds. It is obvious that there was an increase in the solubility, in aqueous chloride solutions, with the increasing temperature. Results were translated regarding the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The solubility data was precisely associated with a semiempirical equation. The standard molar Gibbs free energies of transfer of selected α-amino compounds (ΔtrG°) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. The decrease in solubility is correlated to the positive (ΔtrG°) value which is most part of the enthalpic origin.
Keywords
References
Bhattacharyya A, Bhattacharya SK, J. Solut. Chem., 42, 2149 (2013)
Scott E, Peter F, Sanders J, Appl. Microbiol. Biotechnol., 75(4), 751 (2007)
Lammens TM, Franssen MCR, Scott EL, Sanders JPM, Biomass Bioenerg., 44, 168 (2012)
Mahali K, Roy S, Dolui BK, J. Solution Chem., 42(5), 1096 (2013)
Roy S, Hossain A, Dolui BK, J. Chem. Eng. Data, 61(1), 132 (2016)
Thombre SM, Sarwade BD, J. Macromol. Sci. A, 42(9), 1299 (2005)
Mandal U, Bhattacharya S, Das K, Kundu KK, Z. Phys. Chem., 159(1), 21 (1988)
Held C, Cameretti LF, Sadowski G, Ind. Eng. Chem. Res., 50(1), 131 (2011)
Lu J, Wang XJ, Yang X, Ching CB, J. Chem. Eng. Data, 51(5), 1593 (2006)
Pradhan AA, Vera JH, Fluid Phase Equilib., 152(1), 121 (1998)
Romero CM, Oviedo DC, J. Solution Chem., 42(6), 1355 (2013)
Koseoglu F, Kilic E, Dogan A, Anal. Biochem., 277(2), 243 (2000)
Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 36(6), 2445 (1997)
Pradhan AA, Vera JH, J. Chem. Eng. Data, 45(1), 140 (2000)
Roy S, Guin PS, Mahali K, Dolui BK, J. Mol. Liq., 218, 316 (2016)
Anfinsen CB, Seheraga HA, Adv. Protein Chem., 29, 205 (1975)
El-Dossoki FI, J. Solution Chem., 39(9), 1311 (2010)
Roy S, Mahali K, Akhter S, Dolui BK, Asian J. Chem., 25(12), 6661 (2013)
Reading JF, Watson ID, Hedwig GR, J. Chem.Thermodyn., 22(2), 159 (1990)
Abualreish MJ, Noubigh A, Can. J. Chem (2019).
Noubigh A, Akremi A, J. Mol. Liq., 274, 752 (2019)
Noubigh A, Abderrabba M, Provost E, J. Iran. Chem. Soc., 6(1), 168 (2009)
Noubigh A, Abderrabba M, J. Mol. Liq., 223, 261 (2016)
Noubigh A, Akrmi A, J. Mol. Liq., 220, 277 (2016)
Bowden NA, Sanders JPM, Bruins ME, J. Chem. Eng. Data, 63(3), 488 (2018)
Hayashi K, Matsuda T, Takeyama T, Hino T, Biosci. Biotechnol. Biochem., 30(4), 378 (1966)
Liu Y, Wang Y, Liu YM, Xu SJ, Chen MY, Du SC, Gong JB, J. Chem. Thermodyn., 105, 1 (2017)
Noubigh A, Mgaidi A, Abderrabba M, Provost E, Furst W, J. Sci. Food Agr., 87(5), 738 (2007)
Eisen EO, Joffe J, J. Chem. Eng. Data, 11(4), 480 (1966)
Gomis V, Ruiz F, Devera G, Lopez E, Saquete MD, Fluid Phase Equilib., 98, 141 (1994)
Mullin JW, Crystallization. 3rd ed., Butterworth-Heinemann, Oxford, 2000.
Jing DD, Wang JK, Wang YL, J. Chem. Eng. Data, 55(1), 508 (2010)
Mendonca AFSS, Formigo DTR, Lampreia IMS, J. Solution Chem., 31(8), 653 (2002)
Hossain A, Roy S, J. Mol. Liq., 249, 1133 (2018)
Imran S, Hossain A, Mahali K, Roy AS, Guin PS, Roy S, J. Mol. Liq., 265, 693 (2018)
Das P, Chatterjee S, Basumallick I, J. Chin. Chem. Soc., 51(1), 1 (2004)
Bretti C, Cigala RM, Giuffre O, Lando G, Sammartano S, Fluid Phase Equilib., 459, 51 (2018)
Carta R, Tola G, J. Chem. Eng. Data, 41(3), 414 (1996)
Noubigh A, Abderrabba M, Provost E, J. Chem. Thermodyn., 39(2), 297 (2007)
Scott E, Peter F, Sanders J, Appl. Microbiol. Biotechnol., 75(4), 751 (2007)
Lammens TM, Franssen MCR, Scott EL, Sanders JPM, Biomass Bioenerg., 44, 168 (2012)
Mahali K, Roy S, Dolui BK, J. Solution Chem., 42(5), 1096 (2013)
Roy S, Hossain A, Dolui BK, J. Chem. Eng. Data, 61(1), 132 (2016)
Thombre SM, Sarwade BD, J. Macromol. Sci. A, 42(9), 1299 (2005)
Mandal U, Bhattacharya S, Das K, Kundu KK, Z. Phys. Chem., 159(1), 21 (1988)
Held C, Cameretti LF, Sadowski G, Ind. Eng. Chem. Res., 50(1), 131 (2011)
Lu J, Wang XJ, Yang X, Ching CB, J. Chem. Eng. Data, 51(5), 1593 (2006)
Pradhan AA, Vera JH, Fluid Phase Equilib., 152(1), 121 (1998)
Romero CM, Oviedo DC, J. Solution Chem., 42(6), 1355 (2013)
Koseoglu F, Kilic E, Dogan A, Anal. Biochem., 277(2), 243 (2000)
Khoshkbarchi MK, Vera JH, Ind. Eng. Chem. Res., 36(6), 2445 (1997)
Pradhan AA, Vera JH, J. Chem. Eng. Data, 45(1), 140 (2000)
Roy S, Guin PS, Mahali K, Dolui BK, J. Mol. Liq., 218, 316 (2016)
Anfinsen CB, Seheraga HA, Adv. Protein Chem., 29, 205 (1975)
El-Dossoki FI, J. Solution Chem., 39(9), 1311 (2010)
Roy S, Mahali K, Akhter S, Dolui BK, Asian J. Chem., 25(12), 6661 (2013)
Reading JF, Watson ID, Hedwig GR, J. Chem.Thermodyn., 22(2), 159 (1990)
Abualreish MJ, Noubigh A, Can. J. Chem (2019).
Noubigh A, Akremi A, J. Mol. Liq., 274, 752 (2019)
Noubigh A, Abderrabba M, Provost E, J. Iran. Chem. Soc., 6(1), 168 (2009)
Noubigh A, Abderrabba M, J. Mol. Liq., 223, 261 (2016)
Noubigh A, Akrmi A, J. Mol. Liq., 220, 277 (2016)
Bowden NA, Sanders JPM, Bruins ME, J. Chem. Eng. Data, 63(3), 488 (2018)
Hayashi K, Matsuda T, Takeyama T, Hino T, Biosci. Biotechnol. Biochem., 30(4), 378 (1966)
Liu Y, Wang Y, Liu YM, Xu SJ, Chen MY, Du SC, Gong JB, J. Chem. Thermodyn., 105, 1 (2017)
Noubigh A, Mgaidi A, Abderrabba M, Provost E, Furst W, J. Sci. Food Agr., 87(5), 738 (2007)
Eisen EO, Joffe J, J. Chem. Eng. Data, 11(4), 480 (1966)
Gomis V, Ruiz F, Devera G, Lopez E, Saquete MD, Fluid Phase Equilib., 98, 141 (1994)
Mullin JW, Crystallization. 3rd ed., Butterworth-Heinemann, Oxford, 2000.
Jing DD, Wang JK, Wang YL, J. Chem. Eng. Data, 55(1), 508 (2010)
Mendonca AFSS, Formigo DTR, Lampreia IMS, J. Solution Chem., 31(8), 653 (2002)
Hossain A, Roy S, J. Mol. Liq., 249, 1133 (2018)
Imran S, Hossain A, Mahali K, Roy AS, Guin PS, Roy S, J. Mol. Liq., 265, 693 (2018)
Das P, Chatterjee S, Basumallick I, J. Chin. Chem. Soc., 51(1), 1 (2004)
Bretti C, Cigala RM, Giuffre O, Lando G, Sammartano S, Fluid Phase Equilib., 459, 51 (2018)
Carta R, Tola G, J. Chem. Eng. Data, 41(3), 414 (1996)
Noubigh A, Abderrabba M, Provost E, J. Chem. Thermodyn., 39(2), 297 (2007)