ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 29, 2020
Accepted March 6, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

머신러닝 기법을 활용한 LDPE 공정의 이상 감지

Fault Detection in LDPE Process using Machine Learning Techniques

LG화학 기술연구원, 34122 대전광역시 유성구 문지로 188
LG Chem Research Park, 188, Moonji-Ro, Yuseong-Gu, Daejeon, 34122, Korea
amine@lgchem.com
Korean Chemical Engineering Research, May 2020, 58(2), 224-229(6), 10.9713/kcer.2020.58.2.224 Epub 4 May 2020
downloadDownload PDF

Abstract

머신러닝 기법을 활용하여 LDPE (Low Density Polyethylene) 공정의 이상을 사전 감지하고, 설비의 수명을 예측할 수 있는 기술을 소개한다. 안전성과 생산성 극대화를 위해, 화학 공정의 예상치 못한 이상을 사전에 감지하고 예방하는 것은 매우 중요하다. LDPE 공정은 3,000 kg/cm2g 이상까지 승압되는 고압 공정이기 때문에, ESD (Emergency Shutdown) 가 발생하면 예상치 못한 부동이 발생하고, 그에 따른 보수 기간 증가로 인한 생산성 손실이 발생한다. 고압 공정의 주요 변수들의 운전 데이터를 수집하고, 비지도학습 머신러닝 기술을 활용하여, ESD의 사전 감지 모형을 개발하였다. 4회의 ESD를 2.4일 전에 감지하는 결과를 얻을 수 있었다. 더불어, 물리적으로 의미 있는 핵심 변수들을 활용하면, 고압 설비의 수명을 예측할 수 있음을 확인할 수 있었다.
We propose a machine learning-based method for proactively detecting faults in LDPE processes and predicting equipment lifespan. It is important to detect and prevent unexpected faults in chemical processes in order to maximize safety and productivity. Since LDPE process is a high-pressure process up to 3,000 kg/cm2g or more, once ESD occurs, it can result in productivity loss due to increased maintenance periods. By collecting key variables operation data of the process and using unsupervised machine leaning methods, we developed a fault detection model which detected 4 ESDs 2.4 days prior to the occurrence. In addition, it was confirmed that the life expectancy of a hyper compressor can be predicted by using the physically significant key variables.

References

Venkatsubramanian V, Rengaswamy R, Yin K, Kavuri SN, Comput. Chem. Eng., 27(3), 293 (2003)
Venkatasubramanian V, Rengaswamy R, Kavuri SN, Comput. Chem. Eng., 27(3), 313 (2003)
Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K, Comput. Chem. Eng., 27(3), 327 (2003)
Li H, Wang HG, Fan WH, Ind. Eng. Chem. Res., 56(9), 2475 (2017)
Gajjar S, Palazoglu A, Chemometrics and Intelligent Laboratory Systems, 154, 122-136 (2016).
Zhang ZP, Zhao JS, Comput. Chem. Eng., 107, 395 (2017)
Liu K, Fei Z, Yue B, Liang J, Lin H, Chemometrics and Intelligent Laboratory Systems, 146, 426-436(2015).
Adedigba SA, Khan F, Yang M, Ind. Eng. Chem. Res., 56(8), 2094 (2017)
He QP, Wang J, J. Process Control, 67, 35 (2018)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로