Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 12, 2020
Accepted February 1, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출, 마이크로웨이브를 이용한 추출, 초음파를 이용한 추출 방법 비교
Comparison of Conventional Solvent Extraction, Microwave-Assisted Extraction, and Ultrasound-Assisted Extraction Methods for Paclitaxel Recovery from Biomass
공주대학교 화학공학부, 31080 충남 천안시 서북구 천안대로 1223-24
Department of Chemical Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si, Chungcheongnam-do, 31080, Korea
Korean Chemical Engineering Research, May 2020, 58(2), 273-279(7), 10.9713/kcer.2020.58.2.273 Epub 4 May 2020
Download PDF
Abstract
본 연구에서는 바이오매스로부터 파클리탁셀 회수를 위한 전통적 용매 추출(conventional solvent extraction, CSE), 마이크로웨이브를 이용한 추출(microwave-assisted extraction, MAE), 초음파를 이용한 추출(ultrasound-assisted extraction, UAE) 방법을 비교하였다. 추출 용매 종류(아세톤, 클로로포름, 에탄올, 메탄올, 메틸렌 클로라이드)에 따른 영향을 조사한 결과, 메탄올이 모든 추출 방법에서 가장 적합하였다. 메탄올을 이용한 MAE와 UAE의 경우, 단 1회의 추출로 대부분의 파클리탁셀 회수(>95%)가 가능하였다. 또한 MAE와 UAE의 경우 추출 온도(25-45 °C), 마이크로웨이브 파워(50-150W), 초음파 파워(180-380W)의 증가에 따라 파클리탁셀 회수율이 증가하였다. 또한 SEM 분석을 통해 바이오매스 표면을 조사한 결과, 표면 구조가 CSE의 경우에는 조금 주름진 형태를 보인 반면 MAE와 UAE의 경우에는 강한 충격으로 매우 거칠고 파괴된 형태를 보였다.
In this study, conventional solvent extraction (CSE), microwave-assisted extraction (MAE), and ultrasoundassisted extraction (UAE) were compared for the recovery of paclitaxel from biomass. As a result of investigating the effect of the extraction solvent type (acetone, chloroform, ethanol, methanol, methylene chloride), methanol was the most suitable for all extraction methods. In the case of MAE and UAE using methanol, most of the paclitaxel (> 95%) was recovered by only one extraction. The recovery rate of paclitaxel increased with the increase of extraction temperature (25-45 °C), microwave power (50-150 W), and ultrasonic power (180-380 W) for MAE and UAE. In addition, SEM analysis showed that the biomass surface structure was slightly corrugated in CSE, while in the MAE and UAE, it was very rough and destroyed by strong impact.
Keywords
References
Kim JH, Korean J. Biotechnol. Bioeng., 21, 1 (2006)
Lee SH, Kim JH, Process Biochem., 76, 187 (2019)
Kang HJ, Kim JH, Biotechnol. Bioproc. Eng., 24, 513 (2019)
Pyo SH, Choi HJ, Han BH, J. Chromatogr., 1123, 15 (2006)
Lee CG, Kim JH, Process Biochem., 59, 216 (2017)
Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 15, 337 (2000)
Yoo KW, Kim JH, Biotechnol. Bioproc. Eng., 23, 532 (2018)
Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023 (2015)
Pyo SH, Song BK, Ju CH, Han BH, Choi HJ, Process Biochem., 40(3-4), 1113 (2005)
Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37(7), 679 (2002)
Ha GS, Kim JH, Process Biochem., 51(10), 1664 (2016)
Lee JY, Kim JH, Sep. Purif. Technol., 80(2), 240 (2011)
Hyun JE, Kim JH, Korean J. Biotechnol. Bioeng., 23, 281 (2008)
Gao M, Wang H, Ma M, Zhang Y, Yin X, Dahlgren RA, Du D, Wang X, Food Chem., 175, 181 (2015)
Ruen-ngam D, Shotipruk A, Pavasant P, Sep. Sci. Technol., 46(1), 64 (2011)
Salarbashia D, Fazly Bazzazb BS, Karimkhani MM, Sabeti Noghabi Z, Khanzadeh F, Sahebkar A, Ind. Crop. Prod., 55, 163 (2014)
Chunying L, Zhicheng L, Chunjian Z, Lei Y, Yujie F, Kunming S, Xin H, Zhao L, Yuangang Z, J. Sep. Sci., 38, 291 (2015)
Pongmalai P, Devahastin S, Chiewchan N, Soponronnarit S, Sep. Purif. Technol., 144, 37 (2015)
Soria AC, Villamiel M, Trends Food Sci. Technol., 21, 323 (2010)
Mandal V, Mohan Y, Hemalatha S, Phcog. Rev., 1, 7 (2007)
Gamborg OL, Miller RA, Ojima K, Exp. Cell Res., 50, 151 (1968)
Kim TW, Kim JH, Korean J. Chem. Eng., 33(11), 3175 (2016)
Lee JY, Kim JH, Korean J. Chem. Eng., 28(7), 1561 (2011)
Kim JH, Hong SS, Korean J. Biotechnol. Bioeng., 15, 346 (2000)
Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985 (2004)
Saxena DK, Sharma SK, Sambi SS, Pol. J. Chem. Technol, 14, 29 (2012)
Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H, Sep. Purif. Technol., 54(2), 253 (2007)
Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169 (2005)
Meziane S, Kadi H, J. Am. Oil Chem. Soc., 85, 391 (2008)
d'Alessandro LG, Kriaa K, Nikov L, Dimitrov K, Sep. Purif. Technol., 93, 42 (2012)
Kim WK, Chae HJ, Kim JH, Biotechnol. Bioproc. Eng., 15, 481 (2010)
Lee SH, Kim JH, Process Biochem., 76, 187 (2019)
Kang HJ, Kim JH, Biotechnol. Bioproc. Eng., 24, 513 (2019)
Pyo SH, Choi HJ, Han BH, J. Chromatogr., 1123, 15 (2006)
Lee CG, Kim JH, Process Biochem., 59, 216 (2017)
Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
Kim JH, Lim CB, Kang IS, Hong SS, Lee HS, Korean J. Biotechnol. Bioeng., 15, 337 (2000)
Yoo KW, Kim JH, Biotechnol. Bioproc. Eng., 23, 532 (2018)
Kim GJ, Kim JH, Korean J. Chem. Eng., 32(6), 1023 (2015)
Pyo SH, Song BK, Ju CH, Han BH, Choi HJ, Process Biochem., 40(3-4), 1113 (2005)
Kim JH, Kang IS, Choi HK, Hong SS, Lee HS, Process Biochem., 37(7), 679 (2002)
Ha GS, Kim JH, Process Biochem., 51(10), 1664 (2016)
Lee JY, Kim JH, Sep. Purif. Technol., 80(2), 240 (2011)
Hyun JE, Kim JH, Korean J. Biotechnol. Bioeng., 23, 281 (2008)
Gao M, Wang H, Ma M, Zhang Y, Yin X, Dahlgren RA, Du D, Wang X, Food Chem., 175, 181 (2015)
Ruen-ngam D, Shotipruk A, Pavasant P, Sep. Sci. Technol., 46(1), 64 (2011)
Salarbashia D, Fazly Bazzazb BS, Karimkhani MM, Sabeti Noghabi Z, Khanzadeh F, Sahebkar A, Ind. Crop. Prod., 55, 163 (2014)
Chunying L, Zhicheng L, Chunjian Z, Lei Y, Yujie F, Kunming S, Xin H, Zhao L, Yuangang Z, J. Sep. Sci., 38, 291 (2015)
Pongmalai P, Devahastin S, Chiewchan N, Soponronnarit S, Sep. Purif. Technol., 144, 37 (2015)
Soria AC, Villamiel M, Trends Food Sci. Technol., 21, 323 (2010)
Mandal V, Mohan Y, Hemalatha S, Phcog. Rev., 1, 7 (2007)
Gamborg OL, Miller RA, Ojima K, Exp. Cell Res., 50, 151 (1968)
Kim TW, Kim JH, Korean J. Chem. Eng., 33(11), 3175 (2016)
Lee JY, Kim JH, Korean J. Chem. Eng., 28(7), 1561 (2011)
Kim JH, Hong SS, Korean J. Biotechnol. Bioeng., 15, 346 (2000)
Pyo SH, Park HB, Song BK, Han BH, Kim JH, Process Biochem., 39(12), 1985 (2004)
Saxena DK, Sharma SK, Sambi SS, Pol. J. Chem. Technol, 14, 29 (2012)
Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H, Sep. Purif. Technol., 54(2), 253 (2007)
Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169 (2005)
Meziane S, Kadi H, J. Am. Oil Chem. Soc., 85, 391 (2008)
d'Alessandro LG, Kriaa K, Nikov L, Dimitrov K, Sep. Purif. Technol., 93, 42 (2012)
Kim WK, Chae HJ, Kim JH, Biotechnol. Bioproc. Eng., 15, 481 (2010)