Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 25, 2020
Accepted April 30, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
케나프 기반 합성가스 생산을 위한 공정 설계 및 경제성 평가
Process Design and Economics for Conversion of Kenaf to Syngas
전북대학교 화학공학부, 54896 전라북도 전주시 덕진구 백제대로 567
School of Chemical Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Korea
jhhan@jbnu.ac.kr
Korean Chemical Engineering Research, August 2020, 58(3), 362-368(7), 10.9713/kcer.2020.58.3.362 Epub 30 July 2020
Download PDF
Abstract
합성가스는 화학제품 및 수송연료의 원료로 이용되며, 최근 목질계 바이오매스의 가스화를 통한 합성가스 생산기술에 대한 연구가 다수 진행되었다. 케나프는 높은 생산성과 이산화탄소 흡수율을 가지는 목질계 바이오매스로 이산화탄소 저감을 위한 대체자원으로서 활용 가능성이 높다. 본 연구는 케나프 가스화 실험연구 데이터를 바탕으로 상용 수준의 케나프 가스화 공정을 개발하고, 해당 공정의 타당성 및 실현가능성을 평가하는 연구로서, 케나프 가스화 통합공정 설계, 열교환망 설계, 기술경제성 평가로 구성된다. 개발된 공정으로부터 생산되는 합성가스의 최소판매가격은 1 GJ당 9.55 달러로, 합성가스의 시장가격보다 낮은 것을 확인하였다.
Syngas can be used as raw material for chemical and fuel production. Currently, many studies on syngas production from gasification of biomass have been conducted. Kenaf is a promising renewable resource with high productivity and CO2 immobilization. This study developed a large-scale kenaf gasification process based on the experimental data, and evaluated the techno-economic feasibility, which consists of three steps (integrated process design, heat exchanger network design, techno-economic assessment). The minimum selling price of syngas is US$ 9.55/GJ, and it is lower than current market price of syngas.
References
Kojima Y, et al., Kenaf as Bioresource for Production of Hydrogen-rich Gas. Agrotechnology, 3(1), 125(2014).
Saba N, et al., Potential of Bioenergy Production from Industrial Kenaf (Hibiscus cannabinus L.) Based on Malaysian Perspective. Renewable and Sustainable Energy Reviews, 42, 446-459(2015).
Lee CK, Cho MS, Kim IH, Lee Y, Nam JD, Macromol. Res., 18(6), 566 (2010)
Aranda G, et al., Environmental Progress & Sustainable Energy, 33(3), 711-720(2014).
Kaisalo N, Tar Reforming in Biomass Gasification gas Cleaning (2017).
AlNouss A, et al., Applied Energy, 261, 114350(2020).
Mehrpooya M, Khalili M, Sharifzadeh MMM, Renewable and Sustainable Energy Reviews, 91, 869-887(2018).
Formica M, Frigo S, Gabbrielli R, Energy conversion and management, 120, 358-369 (2016).
Kang CH, et al., Jeollabuk-do Agricultural Research and Extension Service, Iksan (Korea) (2016).
Dutta A, et al., Environmental Progress & Sustainable Energy, 31(2), 182-190(2012).
Li P, Process Design and Simulation of Producing Liquid Transportation Fuels from Biomass (2017).
Dutta A, et al., National Renewable Energy Lab.(NREL), Golden, CO (United States) (2011).
Darrow K, et al., Catalog of CHP technologies. US Environmental Protection Agency, Washington, DC, p. 5-6(2015).
Phillips S, et al., National Renewable Energy Lab.(NREL), Golden, CO (United States) (2007).
Rauch R, Hrbek J, Hofbauer H, Advances in Bioenergy: The Sustainability Challenge, 3, 73-91(2015).
Verbeeck K, et al., Energy & Environmental Science, 11(7), 1788-1802(2018).
Saba N, et al., Potential of Bioenergy Production from Industrial Kenaf (Hibiscus cannabinus L.) Based on Malaysian Perspective. Renewable and Sustainable Energy Reviews, 42, 446-459(2015).
Lee CK, Cho MS, Kim IH, Lee Y, Nam JD, Macromol. Res., 18(6), 566 (2010)
Aranda G, et al., Environmental Progress & Sustainable Energy, 33(3), 711-720(2014).
Kaisalo N, Tar Reforming in Biomass Gasification gas Cleaning (2017).
AlNouss A, et al., Applied Energy, 261, 114350(2020).
Mehrpooya M, Khalili M, Sharifzadeh MMM, Renewable and Sustainable Energy Reviews, 91, 869-887(2018).
Formica M, Frigo S, Gabbrielli R, Energy conversion and management, 120, 358-369 (2016).
Kang CH, et al., Jeollabuk-do Agricultural Research and Extension Service, Iksan (Korea) (2016).
Dutta A, et al., Environmental Progress & Sustainable Energy, 31(2), 182-190(2012).
Li P, Process Design and Simulation of Producing Liquid Transportation Fuels from Biomass (2017).
Dutta A, et al., National Renewable Energy Lab.(NREL), Golden, CO (United States) (2011).
Darrow K, et al., Catalog of CHP technologies. US Environmental Protection Agency, Washington, DC, p. 5-6(2015).
Phillips S, et al., National Renewable Energy Lab.(NREL), Golden, CO (United States) (2007).
Rauch R, Hrbek J, Hofbauer H, Advances in Bioenergy: The Sustainability Challenge, 3, 73-91(2015).
Verbeeck K, et al., Energy & Environmental Science, 11(7), 1788-1802(2018).