Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 7, 2020
Accepted April 7, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
이산화탄소 원료 공급의 불확실성을 고려한 미세조류 기반 바이오 디젤 공급 네트워크 최적화
Optimization of Microalgae-Based Biodiesel Supply Chain Network Under the Uncertainty in Supplying Carbon Dioxide
1한국생산기술연구원 친환경재료공정그룹, 44413 울산광역시 중구 종가로 55 2전북대학교 반도체·화학공학부, 54896 전라북도 전주시 덕진구 백제대로 567 3전북대학교 화학공학부, 54896 전라북도 전주시 덕진구 백제대로 567
1Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, 55, Jongga-ro, Jung-gu, Ulsan 44413, Korea 2School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Korea 3School of Chemical Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea
kjh32@kitech.re.kr
Korean Chemical Engineering Research, August 2020, 58(3), 396-407(12), 10.9713/kcer.2020.58.3.396 Epub 30 July 2020
Download PDF
Abstract
전세계적으로 화석 연료가 고갈 되면서 화석 연료를 대체할 수 있는 자원이 필요한 실정이며, 대체 자원으로는 바이오 연료가 각광을 받고 있다. 바이오 연료는 바이오 매스로부터 생산되는데 바이오 매스는 바이오 연료 및 바이오화학제품 생산이 가능한 재생 가능 자원이다. 특히, 화석 연료를 대체하기 위하여 이산화탄소와 바이오 매스를 이용하여 바이오 연료(바이오 디젤)를 생산하는 연구가 주목을 받고 있다. 바이오 매스를 기반으로 하여 바이오 디젤을 생산 하기 위해서는 바이오 디젤 생산에 필요한 원료(예, 이산화탄소, 물)와 잠재적인 바이오 매스 리파이너리 용량 및 설치 위치, 생산된 바이오 디젤의 수요 도시까지의 공급을 모두 고려하는 공급 네트워크 개발이 필요하다. 바이오 매스를 이용한 바이오 디젤 공급 네트워크에 대하여 많은 연구가 수행이 되었지만, 미세조류 기반 최적의 바이오 디젤 생산 전략에 상당히 영향이 있는 이산화탄소 공급량에 대한 불확실성을 고려한 연구는 거의 수행되지 않았다. 미세조류 기반 바이오 디젤을 생산 시 상당히 중요한 원료로 이용되는 이산화탄소는 화력발전소에서 발생하는 배출 가스로부터 포집하여 사용하기 때문에 이산화탄소 공급량의 불확실성은 최적의 바이오 디젤 네트워크를 구축하는데 큰 영향이 있다. 따라서, 본 연구에서는 이산화탄소 공급량의 불확실성을 고려하는 최적 공급 네트워크 설계를 결정하기 위해 2단계 확률 모델을 개발한다. 이 모델의 목표는 이산화탄소 공급량 불확실성을 고려하고 각 지역의 디젤 요구량을 충족시키면서 총 네트워크 비용을 결정하는 것이다. 이 모델은 대한민국의 디젤 수요량의 10%를 충족시키는 사례 연구를 평가하였다. 확률론적 모델(연간 갤런당 12.9 미국 달러)에 의해 결정된 최적의 바이오 디젤 공급 비용은 결정론적 모델(연간갤런당 10.5 미국달러)의 결과보다 약간(26%) 높다. 이산화탄소 공급량이 변동되는 경우(확률론적 모델)는 바이오 디젤 공급 네트워크 전략에 상당한 영향을 미쳤다.
As fossil fuels are depleted worldwide, alternative resources is required to replace fossil fuels, and biofuels are in the spotlight as alternative resources. Biofuels are produced from biomass, which is a renewable resource to produce biofuels or bio-chemicals. Especially, in order to substitute fossil fuels, the research focusing the biofuel (biodiesel) production based on CO2 and biomass achieves more attention recently. To produce biomass-based biodiesel, the development of a supply chain network is required considering the amounts of feedstocks (ex, CO2 and water) required producing biodiesel, potential locations and capacities of bio-refineries, and transportations of biodiesel produced at biorefineries to demand cities. Although many studies of the biomass-based biodiesel supply chain network are performed, there are few types of research handled the uncertainty in CO2 supply which influences the optimal strategies of microalgae-based biodiesel production. Because CO2, which is used in the production of microalgae-based biodiesel as one of important resources, is captured from the off-gases emitted in power plants, the uncertainty in CO2 supply from power plants has big impacts on the optimal configuration of the biodiesel supply chain network. Therefore, in this study, to handle those issues, we develop the two-stage stochastic model to determine the optimal strategies of the biodiesel supply chain network considering the uncertainty in CO2 supply. The goal of the proposed model is to minimize the expected total cost of the biodiesel supply chain network considering the uncertain CO2 supply as well as satisfy diesel demands at each city. This model conducted a case study satisfying 10% diesel demand in the Republic of Korea. The overall cost of the stochastic model (US$ 12.9/gallon·y) is slightly higher (23%) than that of the deterministic model (US$ 10.5/gallon·y). Fluctuations in CO2 supply (stochastic model) had a significant impact on the optimal strategies of the biodiesel supply network.
References
Holloway S, Energy, 30(11-12), 2318 (2005)
Sims REH, Sol. Energy, 76(1-3), 9 (2004)
Han JH, Ahn YC, Lee JU, Lee IB, Korean J. Chem. Eng., 29(8), 975 (2012)
de Gorter H, Tsur Y, Eur. Rev. Agric. Econ., 37(2), 133 (2010)
Kauffman N, Hayes D, Brown R, Fuel, 90(11), 3306 (2011)
Zabaniotou A, Andreou K, J. Clean Prod., 18(8), 784 (2010)
Chakraborty S, Aggarwal V, Mukherjee D, Andras K, Asia-Pac. J. Chem. Eng., 7, S254 (2012)
Ho DP, Ngo HH, Guo W, Bioresour. Technol., 169, 742 (2014)
Vassilev SV, Vassileva CG, Fuel, 181, 1 (2016)
Alam F, Mobin S, Chowdhury H, Procedia Eng., 105, 763 (2015)
Alam MA, Wang Z, Yuan Z, Springer, p. 89-111 2017.
Shemfe MB, Gu S, Ranganathan P, Fuel, 143, 361 (2015)
Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A, Fuel, 89, S29 (2010)
Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Bioresour. Technol., 182, 258 (2015)
Han J, Sen SM, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Comput. Chem. Eng., 81, 57 (2015)
Byun J, Han J, Bioresour. Technol., 211, 360 (2016)
Byun J, Han J, Green Chem., 19, 5214 (2017)
Davis R, Aden A, Pienkos PT, Appl. Energy, 88(10), 3524 (2011)
Byun J, Ahn Y, Kim J, Kim JR, Jeong SY, Kim BS, Kim HJ, Han J, Energy Conv. Manag., 163, 180 (2018)
An HJ, Wilhelm WE, Searcy SW, Biomass Bioenerg., 35(9), 3763 (2011)
Ahn YC, Lee IB, Lee KH, Han JH, Appl. Energy, 154, 528 (2015)
Delrue F, Li-Beisson Y, Setier PA, Sahut C, Roubaud A, Froment AK, Peltier G, Bioresour. Technol., 136, 205 (2013)
Batan LY, Graff GD, Bradley TH, Bioresour. Technol., 219, 45 (2016)
Thilakaratne R, Wright MM, Brown RC, Fuel, 128, 104 (2014)
Dutta S, Neto F, Coelho MC, Algal Res., 20, 44 (2016)
Xin CH, Addy MM, Zhao JY, Cheng YL, Cheng SB, Mu DY, Liu YH, Ding RJ, Chen P, Ruan R, Bioresour. Technol., 211, 584 (2016)
Ou L, Thilakaratne R, Brown RC, Wright MM, Biomass Bioenerg., 72, 45 (2015)
Kim SH, Yoon SG, Chae SH, Park S, J. Environ. Manage., 91(3), 690 (2010)
Vuarnoz D, Kitanovski A, Gonin C, Borgeaud Y, Delessert M, Meinen M, Egolf PW, Appl. Energy, 100, 229 (2012)
Rudberg M, Waldemarsson M, Lidestam H, Appl. Energy, 104, 487 (2013)
Han JH, Ahn YC, Lee IB, Appl. Energy, 95, 186 (2012)
Han JH, Lee IB, Appl. Energy, 125, 136 (2014)
Huang Y, Chen CW, Fan Y, Transp. Res. Pt. e-Logist. Transp. Rev., 46(6), 820 (2010)
Sharifzadeh M, Garcia MC, Shah N, Biomass Bioenerg., 81, 401 (2015)
Lim MK, Ouyang Y, Springer, p. 143-162(2016).
Kim J, Realff MJ, Lee JH, Whittaker C, Furtner L, Biomass Bioenerg., 35(2), 853 (2011)
Yu J, Lee IB, Han J, Ahn Y, J. Chem. Eng. Jpn., 53(1), 24 (2020)
Kim J, Johnson TA, Miller JE, Stechel EB, Maravelias CT, Energy Environ. Sci., 5(9), 8417 (2012)
Kim J, Lee Y, Moon I, Int. J. Hydrog. Energy, 33(18), 4715 (2008)
Sims REH, Sol. Energy, 76(1-3), 9 (2004)
Han JH, Ahn YC, Lee JU, Lee IB, Korean J. Chem. Eng., 29(8), 975 (2012)
de Gorter H, Tsur Y, Eur. Rev. Agric. Econ., 37(2), 133 (2010)
Kauffman N, Hayes D, Brown R, Fuel, 90(11), 3306 (2011)
Zabaniotou A, Andreou K, J. Clean Prod., 18(8), 784 (2010)
Chakraborty S, Aggarwal V, Mukherjee D, Andras K, Asia-Pac. J. Chem. Eng., 7, S254 (2012)
Ho DP, Ngo HH, Guo W, Bioresour. Technol., 169, 742 (2014)
Vassilev SV, Vassileva CG, Fuel, 181, 1 (2016)
Alam F, Mobin S, Chowdhury H, Procedia Eng., 105, 763 (2015)
Alam MA, Wang Z, Yuan Z, Springer, p. 89-111 2017.
Shemfe MB, Gu S, Ranganathan P, Fuel, 143, 361 (2015)
Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A, Fuel, 89, S29 (2010)
Han J, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Bioresour. Technol., 182, 258 (2015)
Han J, Sen SM, Luterbacher JS, Alonso DM, Dumesic JA, Maravelias CT, Comput. Chem. Eng., 81, 57 (2015)
Byun J, Han J, Bioresour. Technol., 211, 360 (2016)
Byun J, Han J, Green Chem., 19, 5214 (2017)
Davis R, Aden A, Pienkos PT, Appl. Energy, 88(10), 3524 (2011)
Byun J, Ahn Y, Kim J, Kim JR, Jeong SY, Kim BS, Kim HJ, Han J, Energy Conv. Manag., 163, 180 (2018)
An HJ, Wilhelm WE, Searcy SW, Biomass Bioenerg., 35(9), 3763 (2011)
Ahn YC, Lee IB, Lee KH, Han JH, Appl. Energy, 154, 528 (2015)
Delrue F, Li-Beisson Y, Setier PA, Sahut C, Roubaud A, Froment AK, Peltier G, Bioresour. Technol., 136, 205 (2013)
Batan LY, Graff GD, Bradley TH, Bioresour. Technol., 219, 45 (2016)
Thilakaratne R, Wright MM, Brown RC, Fuel, 128, 104 (2014)
Dutta S, Neto F, Coelho MC, Algal Res., 20, 44 (2016)
Xin CH, Addy MM, Zhao JY, Cheng YL, Cheng SB, Mu DY, Liu YH, Ding RJ, Chen P, Ruan R, Bioresour. Technol., 211, 584 (2016)
Ou L, Thilakaratne R, Brown RC, Wright MM, Biomass Bioenerg., 72, 45 (2015)
Kim SH, Yoon SG, Chae SH, Park S, J. Environ. Manage., 91(3), 690 (2010)
Vuarnoz D, Kitanovski A, Gonin C, Borgeaud Y, Delessert M, Meinen M, Egolf PW, Appl. Energy, 100, 229 (2012)
Rudberg M, Waldemarsson M, Lidestam H, Appl. Energy, 104, 487 (2013)
Han JH, Ahn YC, Lee IB, Appl. Energy, 95, 186 (2012)
Han JH, Lee IB, Appl. Energy, 125, 136 (2014)
Huang Y, Chen CW, Fan Y, Transp. Res. Pt. e-Logist. Transp. Rev., 46(6), 820 (2010)
Sharifzadeh M, Garcia MC, Shah N, Biomass Bioenerg., 81, 401 (2015)
Lim MK, Ouyang Y, Springer, p. 143-162(2016).
Kim J, Realff MJ, Lee JH, Whittaker C, Furtner L, Biomass Bioenerg., 35(2), 853 (2011)
Yu J, Lee IB, Han J, Ahn Y, J. Chem. Eng. Jpn., 53(1), 24 (2020)
Kim J, Johnson TA, Miller JE, Stechel EB, Maravelias CT, Energy Environ. Sci., 5(9), 8417 (2012)
Kim J, Lee Y, Moon I, Int. J. Hydrog. Energy, 33(18), 4715 (2008)