Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 9, 2020
Accepted May 13, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
다단제어용 안티 와인드업 기술 개발
Development of Anti-windup Techniques for Cascade Control System
경북대학교 응용화학공학부, 41566 대구광역시 북구 대학로 80
School of Applied Chemical Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 41566, Korea
suwhansung@knu.ac.kr
Korean Chemical Engineering Research, August 2020, 58(3), 430-437(8), 10.9713/kcer.2020.58.3.430 Epub 30 July 2020
Download PDF
Abstract
본 연구에서는 다단제어(Cascade Control)를 위한 안티 와인드업(Anti-windup) 기술을 개발하였다. 다단제어는 외란을 보다 효과적으로 제어하기 위해 내부에 되먹임(Feedback) 제어루프를 추가한 제어구조이다. 단일루프제어(Single-loop Control)와는 다르게 두 개의 제어루프로 이루어져 내부의 종속제어루프(Secondary Control)가 외부의 주제어루프 (Primary Control)에 영향을 미치는 특징을 가지고 있다. 산업현장에서 다단제어에 적용하는 기존의 안티 와인드업 기술은 주로 주제어기(Primary Controller)와 종속제어기(Secondary Controller)에 각각 로컬 역연산법(Back Calculation)을 적용하는 것이다. 하지만 이 방법은 종속제어기의 제어출력이 포화되었을 때 발생하는 주제어기의 적분누적(Integralwindup) 현상을 효과적으로 제거하지 못한다. 이를 해결하기 위해 기존 로컬 안티 와인드업 기술을 확대 적용한 두 가지의 다단제어용 안티 와인드업 기술을 제안한다. 첫 번째는 다단 조건부 적분법(Cascade Conditional Integration)이고 두 번째는 다단 역연산법(Cascade Back Calculation)으로 단일루프제어에 적용되어 왔던 로컬 조건부 적분법과 역연산법을 다단제어로 확대 적용하여 다단제어 시스템에서 PID제어기의 적분누적 현상을 방지하고자하였다. 개발한 다단 조건부 적분법과 다단 역연산법은 간단하고 직관적이면서도 종속제어기의 제어출력의 포화로 인해 발생한 적분누적 현상을 효과적으로 방지할 수 있고 공정이나 제어기 형태에 상관없이 우수한 제어성능을 유지할 수 있었다. 향후 실제 공정 적용을 통해 신뢰성을 확보한다면 산업현장의 다단제어기 성능을 개선하는데 크게 기여를 할 수 있을 것이다.
In this research, the anti-windup techniques for the cascade control system are newly developed. Cascade control system has an additional internal feedback control loop to reject disturbances better than the conventional control system. Remarkable difference between the conventional single-loop control system and the cascade control system is the interaction that the controller output saturation of the secondary control loop strongly affects the integral action of the primary control loop. In industry, local back calculation anti-windup method has been mainly used for each controller without considering the interaction between the two controllers. But it cannot eliminate the integral-windup of the primary controller originated from the saturation of the secondary controller output. To solve the problem, the two anti-windup techniques of the cascade conditional integration and the cascade back calculation are proposed in this research by extending the local anti-windup techniques for the single-loop control system to the cascade control system. Simulation confirmed that the proposed methods can effectively remove the integral windup of the primary controller caused by the saturation of the secondary controller output and show good control performances for various types of processes and controllers. If the reliability of the proposed methods is proved through the applications to real processes in the future, they would highly contribute to improving the control performances of the cascade control system in industry.
References
Sung SW, Lee J, Lee IB, Process Identification and PID Control, John Wiley & Sons (2009).
Seborg DE, Mellichamp DA, Edgar TF, Doyle III FJ, Process Dynamics and Control, John Wiley & Sons(2010).
Berner J, Hagglund T, Astrom KJ, Control Eng. Practice, 54, 231 (2016)
Lee J, Sung SW, Lee FY, Baldea M, Edgar TF, ACS Omega, 4(20), 18760 (2019)
Park BE, Kim KH, Kang HS, Sung SW, Lee IB, J. Chem. Eng. Jpn., 52(5), 430 (2019)
Nikita S, Lee MY, Korean J. Chem. Eng., 36(4), 505 (2019)
Morari M, Zafiriou E, Robust Process Control, Prentice Hall(1989).
Jia BR, Mikalsen R, Smallbone A, Zuo ZX, Feng HH, Roskilly AP, Appl. Energy, 179, 1166 (2016)
Astrom KJ, Hagglund T, PID Controllers: Theory, Design, and Tuning, Instrument Society of America(1995).
Rehan M, Ahmed A, Iqbal N, ISA Trans., 49(3), 293 (2010)
Mehdi N, Rehan M, Malik FN, Bhatti AI, Tufail M, ISA Trans., 53(3), 802 (2014)
Adegbege AA, Heath WP, Automatica, 83, 81 (2017)
Seborg DE, Mellichamp DA, Edgar TF, Doyle III FJ, Process Dynamics and Control, John Wiley & Sons(2010).
Berner J, Hagglund T, Astrom KJ, Control Eng. Practice, 54, 231 (2016)
Lee J, Sung SW, Lee FY, Baldea M, Edgar TF, ACS Omega, 4(20), 18760 (2019)
Park BE, Kim KH, Kang HS, Sung SW, Lee IB, J. Chem. Eng. Jpn., 52(5), 430 (2019)
Nikita S, Lee MY, Korean J. Chem. Eng., 36(4), 505 (2019)
Morari M, Zafiriou E, Robust Process Control, Prentice Hall(1989).
Jia BR, Mikalsen R, Smallbone A, Zuo ZX, Feng HH, Roskilly AP, Appl. Energy, 179, 1166 (2016)
Astrom KJ, Hagglund T, PID Controllers: Theory, Design, and Tuning, Instrument Society of America(1995).
Rehan M, Ahmed A, Iqbal N, ISA Trans., 49(3), 293 (2010)
Mehdi N, Rehan M, Malik FN, Bhatti AI, Tufail M, ISA Trans., 53(3), 802 (2014)
Adegbege AA, Heath WP, Automatica, 83, 81 (2017)