ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 25, 2020
Accepted April 20, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

디지털 전기천공시스템에서 형광 염료로 표지 된 DNA 전달 효율의 정량화

Quantification of DNA Delivery Efficiency Labeled with Fluorescent Dye in Digital Electroporation System

부경대학교 화학공학과, 48547 부산광역시 남구 신선로 365
Department of Chemical Engineering, Pukyong National University, 365, Sinseon-ro, Nam-gu, Busan, 48547, Korea
dj-im@pknu.ac.kr
Korean Chemical Engineering Research, August 2020, 58(3), 450-457(8), 10.9713/kcer.2020.58.3.450 Epub 30 July 2020
downloadDownload PDF

Abstract

선행된 연구에서 Yo-Pro-1의 전달 효율의 경향과 CFP 유전자의 발현 효율의 경향이 큰 차이를 보였지만 이 문제에 대한 원인을 제시할 수 없었다. 따라서 본 연구에서는 형광 염료를 이용하여 DNA에 표지 후 전달 효율을 정량화함으로써 이 문제에 대한 원인을 찾고자 한다. 표지를 위한 형광 염료로 Yo-Pro-1을 사용하였으며, Yo-Pro-1과 표지 된 DNA의 전달 효율을 비교하였다. 전압 조건에 따른 전달효율 비교에서는 Yo-Pro-1과 Yo-Pro-1으로 표지 된 DNA의 전달 효율 모두 96 V에서 전달 효율이 최대가 되었으며 전압이 더 증가하면 전달 효율이 오히려 감소하는 경향을 보였다. 전압 인가 횟수 조건에 따른 전달 효율 비교에서는 Yo-Pro-1과 Yo-Pro-1으로 표지 된 DNA의 두 전달 물질 모두 8회의 전압 인가 횟수에서 전달 효율이 최대가 되었으며 전압 인가 횟수가 더 증가하면 전달 효율이 감소하는 경향을 보였다. 두 결과를 통해 디지털 전기천공시스템에서 Yo-Pro-1을 사용한 전달 효율 측정이 DNA의 전달 효율을 잘 대변하는 것을 확인하였다. 또한, 본 연구의 결과를 통해 선행된 연구에서 보인 Yo-Pro-1의 전달 효율의 경향과 CFP 유전자의 발현 효율의 경향 차이는 전달 물질의 전달 효율 차이에서 기인한 결과가 아닌 전달 된 유전 물질의 발현 과정에서의 문제로 인한 결과임을 추론해 볼 수 있었다.
In the previous study, there was a big difference between the tendency of the delivery efficiency of Yo-Pro-1 and the expression efficiency of the CFP gene, but there was a problem that could not provide a clue to this problem. Therefore, this study aimed to present a clue to this problem by quantifying and comparing the delivery efficiency after labeling DNA using a fluorescent dye, which was one of the methods for quantifying biomolecules. As a fluorescent dye for labeling, Yo-Pro-1 was used, and the delivery efficiency of the fluorescent dye Yo-Pro-1 and the labeled DNA was compared. The delivery efficiency of Yo-Pro-1 and labeled DNA according to the voltage condition of the digital electroporation system was maximized at 96 V, and the delivery efficiency tended to decrease as the voltage increased further. In the comparison of the delivery efficiency of Yo-Pro-1 and labeled DNA according to the number of voltage application conditions, the delivery efficiency was maximized at the number of 8 voltage application times for both delivery materials, and the delivery efficiency tended to decrease as the number of voltage application increases further. Through the two results, it was confirmed that the delivery efficiency using Yo-Pro-1 in the digital electroporation system represents the delivery efficiency of the system well. In addition, through the results of this study, the difference between the tendency of the delivery efficiency of Yo-Pro-1 and the expression efficiency of the CFP gene shown in the preceding study was not the result of the difference in the delivery efficiency of the delivery material, but it can be predicted to be due to a problem with the expression process of the genetic material that had been delivered.

References

Ma F, Li Y, Tang B, Zhang CY, Accounts Chem. Res., 49, 1722 (2016)
Ueno T, Nagano T, Nat. Methods, 8(8), 642 (2011)
Proudnikov D, Mirzabekov A, Nucleic Acids Res., 24(22), 4535 (1996)
Pieter EO, Mohaddeseh AA, Ibrahim K, Nhu TNP, Andrew GE, Anal. Chem., 91, 588 (2019)
Peng T, Hang HC, J. Am. Chem. Soc., 138, 14223 (2016)
Schvartz T, Aloush N, Goliand I, Segal I, Nachmias D, Arbely E, Elia N, Biol. Cell, 28, 2747 (2017)
Weiss LE, Naor T, Shechtman Y, Biochem. Soc. Trans., 46(3), 729 (2018)
Marie D, Vaulot D, Partensky F, Appl. Environ. Microbiol., 62, 1649 (1996)
Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y, Mendell JT, Cell, 164, 69 (2016)
Fujisawa S, Romin Y, Barlas A, et al., Cytotechnology, 66, 259 (2014)
Larsson A, Carlsson C, Jonsson M, Albinosson B, J. Am. Chem. Soc., 166, 8459 (1994)
Kim YH, Kwon SG, Bae SJ, Park SJ, Im DJ, Bioelectrochemistry, 126, 29 (2019)
Im DJ, Korean J. Chem. Eng., 32(6), 1001 (2015)
Im DJ, Clean Technol., 20(4), 354 (2014)
Im DJ, Noh J, Moon D, Kang IS, Anal. Chem., 83, 5168 (2011)
Im DJ, Ahn MM, Yoo BS, Moon D, Lee DW, Kang IS, Langmuir, 28(32), 11656 (2012)
Im DJ, Yoo BS, Ahn MM, Moon D, Kang IS, Anal. Chem., 85, 4038 (2013)
Ahn MM, Im DJ, Kang IS, Analyst, 138, 7362 (2013)
Lee DW, Im DJ, Kang IS, J. Phys. Chem. C., 117, 3426 (2013)
Ahn MM, Im DJ, Kim JG, Lee DW, Kang IS, J. Phys. Chem. Lett., 5, 3021 (2014)
Ahn MM, Im DJ, Yoo BS, Kang IS, Electrophoresis, 36(17), 2086 (2015)
Choi CY, Im DJ, Korean Chem. Eng. Res., 54(4), 568 (2016)
Im DJ, Jeong SN, Yoo BS, Kim B, Kim DP, Jeong WJ, Kang IS, Anal. Chem., 87, 6592 (2015)
Kurita H, Takahashi S, Asada A, Matsuo M, Kishikawa K, Mizuno A, Numano R, PLOS ONE, 10, e01442 (2015)
Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545 (2010)
Im DJ, Jeong SN, Biochem. Eng. J., 122, 133 (2017)
Bae SJ, Im DJ, Korean Chem. Eng. Res., 57(6), 898 (2019)
Flors C, Biopolymers, 95, 290 (2011)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로