ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 19, 2020
Accepted April 19, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon

공주대학교 화학공학부, 31080 충청남도 천안시 서북구 천안대로 1223-24
Division of chemical Engineering, Kongju National University, 1223-24, Cheonan-daero, Seobuk-gu, Cheonan-si, Chungcheongnam-do, 31080, Korea
jjlee@kongju.ac.kr
Korean Chemical Engineering Research, August 2020, 58(3), 458-465(8), 10.9713/kcer.2020.58.3.458 Epub 30 July 2020
downloadDownload PDF

Abstract

활성탄에 의한 acid fuchsin (AF) 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성치를 흡착제의 양, pH, 초기농도, 접촉시간 및 온도를 변수로 하여 수행하였다. 활성탄을 사용한 AF의 흡착에 대한 pH의 영향은 산성(pH 8)에서 흡착백분율이 높은 욕조 현상을 나타냈다. 등온흡착 데이터는 Freundlich, Langmuir, Dubinin-Radushkevich 등온흡착식에 맞춰 보았다. Freundlich 식이 가장 높은 일치도를 나타냈으며, 흡착메카니즘이 다분자층 흡착임을 알았다. 흡착용량은 온도증가와 함께 증가하였다. Freundlich의 분리계수는 이 흡착공정이 적합한 처리공정임을 나타냈다. Dubinin-Radushkevich 등온흡착식에 의해 평가된 흡착 에너지는 활성탄에 의한 AF의 흡착이 물리 흡착임을 확인시켰다. 흡착동력학은 유사이차반응속도식에 잘 맞았다. 입자내 확산 모델에 의해 흡착점에서의 표면 확산이 율속단계로 평가되었다. 흡착공정의 활성화 에너지와 엔탈피 변화는 각각 21.19 kJ/mol, 23.05 kJ/mol 이었다. Gibbs자유 에너지 변화는 흡착반응이 온도가 높아질수록 자발성이 더 진다는 것을 알려주었다. 양의 엔트로피는 이공정이 비가역적이라는 것을 나타냈다. 등량 흡착열은 본질덕으로 물리흡착임을 나타냈다.
Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich’s separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

References

Akar T, Demir TA, Kiran I, Ozcan A, Ozcan AS, Tunali S, J. Chem. Technol. Biotechnol., 81(7), 1100 (2006)
Bhatnagar A, Jain AK, J. Colloid Interface Sci., 281(1), 49 (2005)
Lee JJ, Korean Chem. Eng. Res., 57(5), 679 (2019)
Thinakaran N, Baskaralingam P, Pulikesi M, Panneerselvam P, Sivanesan S, J. Hazard. Mater., 151(2-3), 316 (2008)
Yang S, Wu Y, Wu Y, Zhu L, J. Taiwan Inst. Chem. Eng., 50, 205 (2015)
Yang JW, Kim JH, Korean Chem. Eng. Res., 57(2), 210 (2019)
Gong N, Liu Y, Huang R, Int. J. Biol. Macromol., 115, 580 (2018)
Akbarnejada S, Amooeya AA, Ghasemib S, Microchem J., 149, 103966 (2019)
Marrakchi F, Ahmed MJ, Khanday WA, Asif M, Hameed BH, J. Taiwan Inst. Chem. Eng., 71, 47 (2017)
Lee JJ, J. Korea Acad. Ind. Coop. Soc., 19, 592 (2018)
Saruchi, Kumar V, Arabian J. Chem., 12, 316 (2019)
Edison D, Ramesh KS, Sivaramkumar MS, Velmurugan R, Intl. J. Trend Res. Dev., 3, 22 (2016)
Lee JJ, Appl. Chem. Eng., 28(2), 206 (2017)
Kim YS, Kim JH, J. Chem. Thermodyn., 130, 104 (2019)
Fu JW, Zhu JH, Wang ZW, Wang YH, Wang SM, Yan RQ, Xu Q, J. Colloid Interface Sci., 542, 123 (2019)
Hamza W, Dammak N, Hadjltaief HB, Eloussaief M, Benzina M, Ecotoxicol. Environ. Safe., 163, 365 (2018)
Al-Kadhi NS, Egypt. J. Aquat. Res., 45, 231 (2019)
Abdulraheem AUI, Bala G, Muhammad S, Abdullahi M, Int. Biodeterior. Biodegrad., 102, 265 (2015)
Hasani S, Ardejani FD, Olya ME, Korean J. Chem. Eng., 34(8), 2265 (2017)
Dobrotvorskaia AN, Pestsov OS, Tsyganenko AA, Top. Catal., 60, 1506 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로