ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 23, 2020
Accepted June 11, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

인장강도가 뛰어난 직물집전체를 이용한 탄소전극의 축전식 탈염공정에서의 제염효과

The Salt Removal Efficiency Characteristics of Carbon Electrodes Using Fabric Current Collector with High Tensile Strength in a Capacitive Deionization Process

충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, 28644, Korea
dskim@chungbuk.ac.kr
Korean Chemical Engineering Research, August 2020, 58(3), 466-473(8), 10.9713/kcer.2020.58.3.466 Epub 30 July 2020
downloadDownload PDF

Abstract

직물집전체는 에너지 효율이 높은 담수화 방식인 축전식탈염(Capacitive deionization: CDI)시스템에서 유망한 전극 재료가 될 수 있다. 직물집전체의 매력적인 특징 중 하나는 인장강도가 강하다는 것인데, 기계적 강도가 약한 그라파이트 호일 전극의 대안이 될 수 있다. 또한 섬유적 특성으로 인하여 쉽게 형상을 만들 수 있고, 다공성 물질이라는 점과 섬유 간 공간은 수용성 매질의 흐름을 원활하게 해 준다. 본 연구에 사용된 섬유는 도전성 LM fiber와 carbon fiber를 사용한 방적사를 이용하여 직조 구조로 만들어졌으며, 인장강도는 319 MPa로 그라파이트 호일에 비해서 약 60 배정도 더 강하다. 전극슬러리의 점도, 흡착전압, 공급액의 유량, 공급액의 농도를 변화시켜 가면서 염 제거효율을 측정하여 결과를 분석하였다. NaCl 200 mg/L, 20 ml/min, 흡착전압 1.5 V 조건에서, 단위 셀에서 43.9%, 100개의 셀을 적층한 모듈에서는 59.8%의 염 제거 효율을 각각 보였다. 단위 셀에서는 흡착전압이 1.3, 1.4, 1.5 V로 증가함에 따라 염제거효율이 증가하다가 1.6과 1.7 V로 증가하면서 염 제거 효율은 감소하였다. 그러나 100 셀 적층 모듈에서는 1.5 V 이상의 전압에서도 염 제거효율이 완만한 증가세를 나타내었다. 공급액의 유량을 증가시켰을 때 염 제거율은 감소하였고, 또한 공급액의 농도를 증가시켰을 때에도 염 제거율은 감소하였다.
Fabric current collector can be a promising electrode material for Capacitive Deionization (CDI) system that can achieve energy-efficient desalination of water. The one of the most attractive feature of the fabric current collector is its high tensile strength, which can be an alternative to the low mechanical strength of the graphite foil electrode. Another advantage is that the textile properties can easily make shapes by simple cutting, and the porosity and inter-fiber space which can assist facile flow of the aqueous medium. The fibers used in this study were made of woven structures using a spinning yarn using conductive LM fiber and carbon fiber, with tensile strength of 319 MPa, about 60 times stronger than graphite foil. The results were analyzed by measuring the salt removal efficiency by changing the viscosity of electrode slurry, adsorption voltage, flow rate of the aqueous medium, and concentration of the aqueous medium. Under the conditions of NaCl 200 mg/L, 20ml/min and adsorption voltage 1.5 V, salt removal efficiency of 43.9% in unit cells and 59.8% in modules stacked with 100 cells were shown, respectively. In unit cells, salt removal efficiency increases as the adsorption voltage increase to 1.3, 1.4 and 1.5 V. However, increasing to 1.6 and 1.7 V reduced salt removal efficiency. However, the 100-cell-stacked module showed a moderate increase in salt removal efficiency even at voltages above 1.5 V. The salt removal rate decreased when the flow rate of the feed was increased, and the salt removal rate decreased when the concentration of the feed was increased. This work shows that fabric current collector can be an alternative of a graphite foil.

References

Trainham JA, Newman J, J. Electrochem. Soc., 124, 1528 (1997)
Postel SL, Daily GC, Ehrlich PR, Science, 271(5250), 785 (1996)
Blaedel WJ, Wang JC, Anal. Chem., 51, 799 (1979)
Matlosz M, Newman J, J. Electrochem. Soc., 133, 1850 (1986)
Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327 (2005)
Oren Y, Desalination, 228(1-3), 10 (2008)
Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
Biesheuvel PM, Interface Sci., 332, 258 (2009)
Park BH, Kim YJ, Park JS, Choi JH, ACS Appl. Mater. Interfaces, 17, 717 (2011)
Gabelich CJ, Tran TD, Suffet IH, Sci. Technol., 36, 3010 (2002)
Li H, Zou L, Pan L, Sun Z, Sci. Technol., 44, 8692 (2010)
Lee BR, Jeong IJ, Park SG, Korean Electrochem. Soc., 16, 123 (2013)
Li HB, Pan LK, Lu T, Zhan YK, Nie CY, Sun Z, J. Electroanal. Chem., 653(1-2), 40 (2011)
Kim C, Srimuk P, Lee J, Fleischmann S, Aslan M, Presser V, Carbon, 122, 329 (2017)
Moon DC, Lee KH, Kim CS, Kim DH, Kim MR, Shin CH, Park IY, Nam SY, Lee CG, Anal. Sci. Technol., 13, 89 (2000)
Park CO, Oh JS, Lim JW, Membrane Journal, 28, 271 (2018)
Youngmee B, Science Journal, 25, 197 (2009)
Young JJ, Myoung HL, Hae WC, Kee HL, Dept of Textile Eng., 121(3), 610-617(1999).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로