Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 30, 2020
Accepted July 14, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고압 균질기를 이용한 세라마이드가 함유된 나노에멀젼 제조 및 안정성 평가
Synthesis of Ceramide Nanoemulsion by High-Pressure Homogenizer and Evaluation of Its Stability
㈜하이플럭스 기술연구소, 34037 대전광역시 유성구 갑천로 361-33, 대한민국 1㈜일신오토클레이브 기업부설연구소, 34026 대전광역시 유성구 테크노2로 255, 대한민국 2㈜한국콜마 스킨케어연구소, 06800 서울특별시 서초구 헌릉로8길 61, 대한민국
Research and Development Department, Hiflux Co. Ltd., 361-33, Gapcheon-ro, Yuseong-gu, Daejeon, 34037, Korea 1Research and Development Department, Ilshin Autoclave Co. Ltd., 255, Techno 2-ro, Yuseong-gu, Daejeon, 34026, Korea 2Department of Skincare Research Center, Kolmar Korea Co. Ltd., 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Korea
jowt@suflux.com
Korean Chemical Engineering Research, November 2020, 58(4), 530-535(6), 10.9713/kcer.2020.58.4.530 Epub 29 October 2020
Download PDF
Abstract
본 연구에서는 고압 균질기를 이용해 세라마이드가 포함된 나노에멀젼을 제조하고 물성변화 및 장기 안정성을 알아 보았다. 고압 균질기 압력 및 통과 횟수를 변화 시켜 제조된 나노에멀젼의 평균입자, 입도분포, 제타전위 그리고 점도를 측정하였다. 고압 균질기 압력이 높고 통과 횟수가 많을수록 평균입자는 작아지고 입도 분포는 조밀하였지만 일정조건이상에서는 표면에너지 및 계면활성제의 영향으로 입자간 재결합이 확인되었다. 평균입자가 작을수록 점도 값은 높았지만 제타전위 값에는 큰 차이가 없었다. 제조된 나노에멀젼을 25 °C 와 45°C 로 유지시키며 안정성을 측정한 결과, 초기(7일 이후)에 재결합 현상으로 평균입자가 커진 후 유지되었지만 제조된 나노에멀젼의 안정성에는 큰 변화가 없었다. 이를 통해 고압 균질기를 이용해 세라마이드가 포함된 안정적인 나노에멀젼의 제조가 가능함을 확인하였다.
A ceramide-containing nanoemulsion was synthesized by using a High-Pressure Homogenizer (HPH) to observe its changes in properties and long-term stability. The droplet size, droplet distribution and zeta potential of nanoemulsion were examined by varying the pressure and the number of passes of the HPH. The increase in HPH pressure and number of passes decreased the average droplet size and made the nanoemulsion more uniform. However, beyond certain operating condition, the recombination between the droplets was confirmed due to droplet surface energy and emulsifier. This study also shows that the decrease in droplet size increased the nanoemulsion viscosity although only minimal changes occurred in the zeta potential. The formed nanoemulsion was then tested for its stability by storing it at 25 and 45 °C for 28 days. During the first week, the average droplet size increased due to recombination and then subsequently remained constant. We confirmed that ceramide nanoemulsion for industrial application could be synthesized by using HPH.
References
Park BD, Uhm JG, Lee MJ, Kim Y, J. Soc. Cosmet. Sci. Korea, 25(1), 55 (1999)
Hatziantoniou S, Deli G, Nikas Y, Demetzos C, Papaioannou GT, Micron, 38(8), 819 (2007)
Su R, Yang L, Wang Y, Yu S, Guo Y, Deng J, Zhao Q, Jin X, Int. J. Nanomed., 12, 5203 (2017)
Yilmaz E, Borchert HH, Int. J. Pharm., 307(2), 232 (2006)
Cho WG, Kim KA, Jang SI, Cho BO, J. Soc. Cosmet. Sci. Korea, 44(1), 31 (2018)
Elias PM, Int. J. Dermatol., 20(1), 1 (1981)
Sekiguchi A, Yamauchi H, Manosroi A, Manosroi J, Abe M, Colloids Surf. B: Biointerfaces, 4(5), 287 (1995)
Golemanov K, Tcholakova S, Denkov ND, Gurkov T, Langmuir, 22(8), 3560 (2006)
Sonneville-Aubrun O, Simonnet JT, L'Alloret F, Adv. Colloid Interface Sci., 108-109, 145 (2004)
Sonneville-Aubrun O, Yukuyama MN, Pizzino A, Nanoemulsions, London, UK. 435-475(2018).
Gupta A, Eral HB, Hatton TA, Doyle PS, Soft Matter, 12(11), 2826 (2016)
Morales D, Gutierrez JM, Garcia-Celma MJ, Solans YC, Langmuir, 19(18), 7196 (2003)
Izquierdo P, Esquena J, Tadros TF, Dederen JC, Feng J, Garcia-Celma MJ, Azemar N, Solans C, Langmuir, 20(16), 6594 (2004)
Kwon SS, Kong BJ, Cho WG, Park SN, Korean J. Chem. Eng., 32(3), 540 (2015)
Forgiarini A, Esquena J, Gonzalez C, Solans C, Langmuir, 17(7), 2076 (2001)
Sonneville-Aubrun O, Babayan D, Bordeaux D, Lindner P, Rata G, Cabane B, Phys. Chem. Chem. Phys., 11, 101 (2009)
Delmas T, Piraux H, Couffin AC, Texier I, Vinet F, Poulin P, Cates ME, Bibette J, Langmuir, 27(5), 1683 (2011)
You KM, Jang HH, Lee ES, Park JT, Hong ST, Journal of Oil & Applied Science, 35(1), 70-79(2018).
Jo YJ, Lee SB, Lee JK, Kwon YJ, Food Eng. Prog., 18(4), 341 (2014)
Cho JH, Kim TY, Yun HY, Kim HH, Am. J. Res. Commun., 2(4), 168 (2014)
Traul KA, Driedger A, Ingle DL, Nakhasi D, Food Chem. Toxicol., 38(1), 79 (2000)
Jafari SM, Assadpoor E, He Y, Bhandari B, Food Hydrocolloids, 22(7), 1191 (2008)
Stickel JJ, Powell RL, Annu. Rev. Fluid Mech., 37(1), 129 (2005)
Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa AH, Int. J. Heat Fluid Flow, 28(6), 1492 (2007)
Jia-Fei Z, Zhong-Yang L, Ming-Jiang N, Ke-Fa C, Chin. Phys. Lett., 26(6), 066202 (2009)
Ee SL, Duan X, Liew J, Nguyen QD, Chem. Eng. J., 140(1-3), 626 (2008)
Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ, Curr. Opin. Colloid Interface Sci., 10(3), 102 (2005)
Hatziantoniou S, Deli G, Nikas Y, Demetzos C, Papaioannou GT, Micron, 38(8), 819 (2007)
Su R, Yang L, Wang Y, Yu S, Guo Y, Deng J, Zhao Q, Jin X, Int. J. Nanomed., 12, 5203 (2017)
Yilmaz E, Borchert HH, Int. J. Pharm., 307(2), 232 (2006)
Cho WG, Kim KA, Jang SI, Cho BO, J. Soc. Cosmet. Sci. Korea, 44(1), 31 (2018)
Elias PM, Int. J. Dermatol., 20(1), 1 (1981)
Sekiguchi A, Yamauchi H, Manosroi A, Manosroi J, Abe M, Colloids Surf. B: Biointerfaces, 4(5), 287 (1995)
Golemanov K, Tcholakova S, Denkov ND, Gurkov T, Langmuir, 22(8), 3560 (2006)
Sonneville-Aubrun O, Simonnet JT, L'Alloret F, Adv. Colloid Interface Sci., 108-109, 145 (2004)
Sonneville-Aubrun O, Yukuyama MN, Pizzino A, Nanoemulsions, London, UK. 435-475(2018).
Gupta A, Eral HB, Hatton TA, Doyle PS, Soft Matter, 12(11), 2826 (2016)
Morales D, Gutierrez JM, Garcia-Celma MJ, Solans YC, Langmuir, 19(18), 7196 (2003)
Izquierdo P, Esquena J, Tadros TF, Dederen JC, Feng J, Garcia-Celma MJ, Azemar N, Solans C, Langmuir, 20(16), 6594 (2004)
Kwon SS, Kong BJ, Cho WG, Park SN, Korean J. Chem. Eng., 32(3), 540 (2015)
Forgiarini A, Esquena J, Gonzalez C, Solans C, Langmuir, 17(7), 2076 (2001)
Sonneville-Aubrun O, Babayan D, Bordeaux D, Lindner P, Rata G, Cabane B, Phys. Chem. Chem. Phys., 11, 101 (2009)
Delmas T, Piraux H, Couffin AC, Texier I, Vinet F, Poulin P, Cates ME, Bibette J, Langmuir, 27(5), 1683 (2011)
You KM, Jang HH, Lee ES, Park JT, Hong ST, Journal of Oil & Applied Science, 35(1), 70-79(2018).
Jo YJ, Lee SB, Lee JK, Kwon YJ, Food Eng. Prog., 18(4), 341 (2014)
Cho JH, Kim TY, Yun HY, Kim HH, Am. J. Res. Commun., 2(4), 168 (2014)
Traul KA, Driedger A, Ingle DL, Nakhasi D, Food Chem. Toxicol., 38(1), 79 (2000)
Jafari SM, Assadpoor E, He Y, Bhandari B, Food Hydrocolloids, 22(7), 1191 (2008)
Stickel JJ, Powell RL, Annu. Rev. Fluid Mech., 37(1), 129 (2005)
Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa AH, Int. J. Heat Fluid Flow, 28(6), 1492 (2007)
Jia-Fei Z, Zhong-Yang L, Ming-Jiang N, Ke-Fa C, Chin. Phys. Lett., 26(6), 066202 (2009)
Ee SL, Duan X, Liew J, Nguyen QD, Chem. Eng. J., 140(1-3), 626 (2008)
Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ, Curr. Opin. Colloid Interface Sci., 10(3), 102 (2005)