ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 3, 2020
Accepted July 2, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Experimental and Modeling Studies for the Adsorption of Phenol from Water Using Natural and Modified Algerian Clay

Laboratoire de Recherche en Hydraulique Appliquée, Département d’Hydraulique, Université de Batna 2 53 Route de Constantine, Fesdis 05078–Algeria, Albania 1Laboratoire de Recherche en Hydraulique Appliquée, Département d’Hydraulique, Université de Batna 2 53 Route de Constantine, Fesdis 05078–Algeria, Korea
Korean Chemical Engineering Research, November 2020, 58(4), 624-634(11), 10.9713/kcer.2020.58.4.624 Epub 29 October 2020
downloadDownload PDF

Abstract

The ability of natural and modified clay to adsorb phenol was studied. The clay samples were analyzed by different technical instruments, such as X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. Surface area, pore volume and average pore diameter were also determined using B.E.T method. Up to 73 and 99% of phenol was successfully adsorbed by natural and activated clay, respectively, from the aqueous solution. The experiments carried out show that the time required to reach the equilibrium of phenol adsorption on all the samples is very close to 60 min. The amount of phenol adsorbed shows a declining trend with higher pH as well as with lower pH, with most extreme elimination of phenol at pH 4. The adsorption of phenol increases proportionally with the initial phenol concentration. The maximum adsorption capacity at 25 °C and pH 4 was 29.661 mg/g for modified clay (NaMt). However, the effect of temperature on phenol adsorption was not significant. The simple modification causes the formation of smaller pores in the solid particles, resulting in a higher surface area of NaMt. The equilibrium results in aqueous systems were well fitted by the Freundlich isotherm equation (R2 > 0.98). Kinetic studies showed that the adsorption process is best described by the pseudo-second-order kinetics (R2 > 0.99). The adsorption of phenol on natural and modified clay was spontaneous and exothermal.

References

Legube B, Guide technique, Agence Loire, Bretagne, France(1996).
Degremont SA, Memento technique de l’eau, 10th Edition Lavoisier, Rueil-Malmaison, in two vols(2004).
Agency for toxic substances and disease registry (ATSDR), Public health service(2008).
Michalowicz J, Duda W, Polish J. of Environ. Stud., 16(3), 347 (2007)
Knop A, Pilato LA, Phenolic resins: chemistry, applications and Performance, Springer Science & Business Media(2013).
World Health Organization (WHO), World Health Organization, vol. 2, Geneva, Switzerland(1984).
Dutta NN, Brothakur S, Baruah R, Water Environ. Res., 70, 4 (1998)
Ghodbane I, Nouri L, Hamdaoui O, Chiha M, J. Hazard. Mater., 152(1), 148 (2008)
Huang FC, Lee JF, Lee CK, Chao HP, Colloids Surf. A: Physicochem. Eng. Asp., 239, 41 (2004)
Vimonses V, Lei SM, Jin B, Chowd CWK, Saint C, Chem. Eng. J., 148(2-3), 354 (2009)
Ozcan AS, Erdem B, Ozcan A, J. Colloid Interface Sci., 280(1), 44 (2004)
Naseem R, Tahir SS, Water Res., 35, 3982 (2001)
Ozcan AS, Ozcan A, J. Colloid Interface Sci., 276(1), 39 (2004)
Witthuhn B, Klauth P, Klumpp E, Narres HD, Martinius H, Appl. Clay Sci., 28, 55 (2005)
Gonen Y, Rytwo G, J. Colloid Interface Sci., 299(1), 95 (2006)
Bhattacharyya KG, Sen Gupta S, J. Colloid Interface Sci., 310(2), 411 (2007)
Koyuncu H, Appl. Clay Sci., 38, 279 (2008)
Shu YH, Li LS, Zhang QY, Wu HH, J. Hazard. Mater., 173(1-3), 47 (2010)
Christidis G, Appl. Clay Sci., 13, 79 (1998)
Hassani AH, Seif S, Javid AH, Borghei M, nt. J. Environ. Res., 2(3), 239 (2008)
Aghamohammadi N, Hamidi AA, Hasnain IM, Zinatizadeh AA, Saravi NH, Ghafari S, Int. J. Environ. Res., 1, 96 (2007)
Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O, Environ. Pollut., 107, 391 (2000)
Juang RS, Lin SH, Tsao KH, J. Colloid Interface Sci., 254 (2002).
Ramos Vianna MMG, Franco JHR, Pinto CA, Valenzuela Diaz FR, Buchler PM, Braz. J. Chem. Eng., 21(2), 239 (2004)
Djebbar M, Djafri F, Bouchekara M, Djafri A, Appl. Water Science, 2, 77 (2012)
Diaz-Nava MC, Olguin MT, Solache-Rios M, J. Incl. Phenom. Macrocycl. Chem., 74, 67 (2012)
Hank D, Azi Z, Hocine SA, Chaalal O, Hellal A, J. Ind. Eng. Chem., 20(4), 2256 (2014)
Xu Y, Khan MA, Wang F, Xia, Lei W, Appl. Clay Sci., 162, 204 (2018)
Ren S, Deng J, Meng ZF, Wang T, Xie T, Xu SE, Powder Technol., 356, 284 (2019)
Ouallal H, Dehmani Y, Moussout H, Messaoudi L, Azrour M, Heliyon, 5, e01616 (2019)
Bouiahya K, Es-saidi I, El Bekkali C, Laghzizil A, Robert D, Nunzi JM, Saoiabi A, Colloids Interface Sci. Commun., 31, 100188 (2019)
Khalaf H, Bouras O, Perrichon V, Microp. Mater., 8, 141 (1997)
Boutahala M, Tedjar F, Solid State Ion., 61, 257 (1993)
Hajjaji M, Kacim S, Alami A, El-Bouadili A, El Mountassir M, Appl. Clay Sci., 20, 1 (2001)
Madejova J, Vib. Spectrosc., 31, 1 (2003)
Gadsden A, Infrared spectra of minerals and related inorganic compounds, The Butterworth group, UK(1975).
Brunauer S, Emmet PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
Barrett EP, Joyner LG, Halenda PH, J. Am. Chem. Soc., 73, 373 (1951)
Thommes M, Kaneko K, Neimark AV , Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW, Pure Appl. Chem., 87, 1051 (2015)
Novikova L, Ayrault P, Fontaine C, Chatel G, Jerome F, Belchinskaya L, Ultrason. Sonochem., 31, 598 (2016)
Rouquerol F, Rouquerol J, Sing H, Academic Press London(1999).
Tahani A, Karroua M, El Farissi M, Levitz P, van Damme H, Bergaya F, Margulies L, J. Chem. Phys., 96, 464 (1999)
He J, Zhou QH, Guo JS, Fang F, Environ. Sci. Pollut. R., 25, 22224 (2018)
Acisli O, Karaca S, Gurses A, Appl. Clay Sci., 142, 90 (2017)
Lagergren S, Vetenskapsakad KS, Handl. Band., 24, 1 (1898)
Ho YS, McKay G, Process. Biochem., 34, 451 (1999)
Weber WJ, Morris JC, Proc. Int. Conf., Water Pollution Symposium, vol. 2. Pergamon, Oxford, pp. 231(1962).
El Nemr A, Abdelwahab O, El-Sikaily A, Khaled A, J. Hazard. Mater., 161(1), 102 (2009)
Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS, J. Hazard. Mater., 95(1-2), 137 (2002)
Hameed BH, Colloids Surf. A: Physicochem. Eng. Asp., 307, 45 (2007)
Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM, Colloids Surf. A: Physicochem. Eng. Asp., 272, 89 (2006)
Langmuir I, J. Am. Chem. Soc., 40, 1361 (1918)
Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng. Chem. Fundam., 5, 212 (1966)
Freundlich HMF, Z. Phys. Chem, 57, 385 (1996)
Temkin MI, Pyzhev V, Acta Physiochim., 12, 327 (1940)
Fu QL, Deng YL, Li HS, Liu J, Hu HQ, Chen SW, Sa TM, Appl. Surf. Sci., 255(8), 4551 (2009)
Aksu Z, Tatli AI, Tunc O, Che. Eng. J., 142, 23 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로