ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 16, 2020
Accepted May 30, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

기포유동층 고분자 중합 반응기에서의 슬러그 특성

Slug Characteristics in a Bubbling Fluidized Bed Reactor for Polymerization Reaction

전북대학교 자원에너지공학과, 54896 전라북도 전주시 덕진구 백제대로 567
Department of Mineral Resources Energy Engineering, Jeonbuk National University, 567, Baekje-daero, Jeonju-si, Jeollabuk-do, 54896, Korea
donald@jbnu.ac.kr
Korean Chemical Engineering Research, November 2020, 58(4), 651-657(7), 10.9713/kcer.2020.58.4.651 Epub 29 October 2020
downloadDownload PDF

Abstract

고체 입자들이 유체처럼 움직이는 유동층 공정은 에너지 전환 공정뿐만 아니라 범용 고분자 수지의 생산 공정에도 이용되고 있다. 범용 고분자 수지 중의 하나인 LLDPE(Linear low density polyethylene)도 기포 유동층 공정을 통해전세계에서 생산되고 있다. 입자 크기에 비해 밀도가 낮은 LLDPE 입자들은 고분자 중합 반응을 위해 공급되는 수소에 의해서 유동화된다. 그러나 LLDPE 생산 공정은 기포유동층 공정임에도 불구하고 발생한 슬러그로 인하여 반응에 영향을 끼쳐 공정의 효율 저하를 불러올 수 있다. 이에 본 연구에서는 상용 고분자 반응기를 모사한 pilot 규모의 고분자 합성 반응기(0.38m l.D., 4.4 m High)와 동일한 시뮬레이션 모델을 구축하여 LLDPE 입자의 유동화 상태를 고찰하였다. 특히 기체 유속(0.45-1.2 m/s), 고체 입자 밀도(900-1900 kg/m3), 입자 구형도(0.5-1.0), 입자 크기(120-1230 μm)의 변화에 따른 슬러그 특성을 세밀하게 고찰하기 위하여 전산입자유체해석(Computational particle-fluid dynamics, CPFD)을 이용하였다. CPFD를 통해서 일부 실험자들만 고찰할 수 있었던 flat slug의 발생을 시각적으로 구현하였으며 밀도, 구형도, 크기 등의고체의 물리적 특성을 변화시킴에 따라 슬러그 발생을 저감시킬 수 있음을 확인하였다.
Fluidization processes in which solid particles vividly move like gas or liquid have been widely used in various industrial sectors, such as thermochemical energy conversion and polymerization processes for general purpose polymer resins. One of the general purpose polymer resins, LLDPE(Linear low-density polyethylene) resins have been produced in bubbling fluidized bed processes in the world. In a bubbling fluidization polymerization reactors, LLDPE particles with relatively larger particle size and low density are fluidized by hydrogen gas for polymerization reaction. Though LLDPE polymerization reactors are one of bubbling fluidization processes, slugs that have negative impact for reaction exist or occur in these processes. Therefore, the fluidization state of LLDPE particles was investigated in a simulation model similar to a pilot-scale polymerization reactor (0.38 m l.D., 4.4 m High). In particular, the effect of gas velocity (0.45-1.2 m/s), solid density (900-199 kg/m3), solid sphericity (0.5-1.0), and average particle size (120-1230 μm), on bed height and fluidization state were measured by using a CPFD(Computational particle-fluid dynamics) method. With CPFD analysis, the occurrence of a flat slug was visualized. Also, the change in particle properties, such as particle density, sphericity, and size, could reduce the occurrence of slug and bed expansion.

References

Lee SH, Lee TH, Jeong SM, Lee JM, Renew. Energy, 138, 121 (2019)
Gwak YR, Kim YB, Gwak IS, Lee SH, Fuel, 213, 115 (2018)
Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Chem. Eng. J., 377, 119650 (2019)
Pham HH, Lim YI, Han SG, Lim BS, Ko HS, Korean J. Chem. Eng., 35(5), 1073 (2018)
Lee DY, Ryu HJ, Shun DW, Bae DH, Baek JI, Korean J. Chem. Eng., 35(6), 1257 (2018)
Mendoza JA, Hwang SW, Korean J. Chem. Eng., 35(11), 2157 (2018)
Lee SH, Kim DW, Lee JM, Bae YC, Korean J. Chem. Eng., 57, 853 (2019)
Lee SH, News Inf. Chem. Eng., 37, 200 (2019)
Almendros-Ibanez JA, Fernandez-Torrijos M, Diaz-Heras M, Belmonte JF, Sobrino C, Solar Energy, https://doi.org/10.1016/j.solener.2018.05.047.
Liu T, Liu Q, Lei J, Sui J, J. Clean Prod., 213, 1011 (2019)
Kim YB, Kang SY, Seo SB, Keel SI, Yun JH, Lee SH, Korean Chem. Eng. Res., 57(5), 687 (2019)
Lee SH, Lee DH, Kim SD, Korean J. Chem. Eng., 18(3), 387 (2001)
Lim JH, Bae K, Shin JH, Lee DH, Han JH, Lee DH, Korean Chem. Eng. Res., 54(5), 678 (2016)
Wei L, Lu Y, Zhu J, Jiang G, Hu J, Teng H, Korean J. Chem. Eng., 35(10), 2117 (2018)
Ramirez E, Finney CEA, Pannala S, Daw CS, Halow J, Xiong QG, Chem. Eng. J., 308, 544 (2017)
Amornsirirat C, Chalermsinsuwan B, Mekasut L, Kuchonthara P, Piumsomboon P, Korean J. Chem. Eng., 28(3), 686 (2011)
Salehi-Asl M, Azhgan S, Movahedirad S, Korean J. Chem. Eng., 35(2), 613 (2018)
Liu H, Cattolica RJ, Seiser R, Chem. Eng. Sci., 169, 235 (2017)
Lim JH, Lee DH, Korean Chem. Eng. Res., 55(5), 698 (2017)
Lim JH, Bae K, Shin JH, Kim JH, Lee DH, Han JH, Lee DH, Powder Technol., 288, 315 (2016)
Kunii D, Levenspiel O, Butterworth-Heinemann, Soneham, USA(1991).
Brid RB, Stewart WE, Transport Phenomena, Wiley & Sons, Inc. Newyork, USA(2002).
Ryu HJ, Choi JH, Kim SD, Son JE, Korean Chem. Eng. Res., 39, 579 (2001)
Ryu HJ, Choi JH, Kim SD, Son JE, Korean Chem. Eng. Res., 39, 590 (2001)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로