Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 15, 2020
Accepted September 9, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
순환 유동층 보일러와 초초임계 증기 사이클을 이용한 500 MWe급 순산소 화력발전소의 건식 재순환 흐름의 열 교환 및 경제성 분석
Heat Integration and Economic Analysis of Dry Flue Gas Recirculation in a 500 MWe Oxy-coal Circulating Fluidized-bed (CFB) Power Plant with Ultra-supercritical Steam Cycle
한경대학교 화학공학과 CoSPE 센터, 17579 경기도 안성시 중앙로 327
CoSPE, Dept. Chemical Engineering, Hankyong National University, Anseong, 17579 Korea
Korean Chemical Engineering Research, February 2021, 59(1), 60-67(8), 10.9713/kcer.2021.59.1.60 Epub 15 January 2021
Download PDF
Abstract
본 연구에서는 CO2 포집을 포함하는 500 MWe 급 전기를 생산하는 순산소 석탄화력발전소에 대한 공정흐름도를 제시하였고, 기술경제성 평가를 수행하였다. 이 석탄화력발전소는 순환 유동층 보일러(CFB), 초초 임계 증기 사이클 증기 터빈, 보일러에서 배출되는 배기가스내 수분과 오염물질을 제거하는 배기가스 정제 장치(FGC), 산소 분리 초저온 공정(ASU), 이산화탄소를 분리하는 극저온 공정(CPU)을 포함한다. 건식 배기가스 재순환(FGR)은 CFB연소기내 온도 제어와 고농도 CO2 배출을 위하여 사용되었다. 이 순산소 석탄화력발전소의 열효율을 증가시키기 위하여 FGR 흐름 에 대한 열교환, ASU에서 배출되는 질소 흐름에 대한 열교환, 그리고 CPU 내 기체 압축기의 열 회수를 고려하였다. FGR열교환기의 온도차(ΔT)의 감소는 배기가스의 더 많은 폐열 회수를 의미하며, 전기 및 엑서지 효율을 증가시켰다. FGR열교환기의 ΔT가 10 °C 에서 FGR과 FGC 주변의 연간 비용이 최소가 되었다. 이때, 전기 효율은 39%, 총투자비는 1371 M$, 총생산비용은 90 M$, 그리고 투자수익률은 7%/y, 그리고 투자회수기간은 12년으로 예측되었다. 본 연구를 통하여 순산소 석탄화력발전소의 열효율 향상을 위한 열교환망이 제시되었고, FGR 열교환기의 최적 운전 조건이 도출되었다.
This study presented techno-economic analysis of a 500 MWe oxy-coal power plant with CO2 capture. The power plant included a circulating fluidized-bed (CFB), ultra-supercritical steam turbine, flue gas conditioning (FGC), air separation unit (ASU), and CO2 processing unit (CPU). The dry flue gas recirculation (FGR) was used to control the combustion temperature of CFB. One FGR heat exchanger, one heat exchanger for N2 stream exiting ASU, and a heat recovery from CPU compressor were considered to enhance heat efficiency. The decrease in the temperature difference (ΔT) of the FGR heat exchanger that means the increase in heat recovery from flue gas enhanced the electricity and exergy efficiencies. The annual cost including the FGR heat exchanger and FGC cooling water was minimized at ΔT = 10 °C, where the electricity efficiency, total capital cost, total production cost, and return on investment were 39%, 1371 M$, 90 M$, and 7%/y, respectively.
Keywords
References
Kim YB, Gwak YR, Keel SI, Yun JH, Lee SH, Chem. Eng. J., 377, 119650 (2019)
IEA, “World Energy Outlook 2019,” OECD(2019).
Zhai H, Ou Y, Rubin ES, Environ. Sci. Technol., 49(13), 7571 (2015)
Orr FM, SPE J., 23(6), 2444 (2018)
Omoregbe O, Mustapha AN, Steinberger-Wilckens R, El-Kharouf RA, Onyeaka H, Energy Rep., 6, 1200 (2020)
Zheng L, Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, 1st ed., Woodhead Publishing, Oxford (2011).
Shi Y, Zhong W, Shao Y, Liu X, Appl. Therm. Eng., 150, 1104 (2019)
Wall T, Liu YH, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng CD, Gupta R, Yamada T, Makino K, Yu JL, Chem. Eng. Res. Des., 87(8A), 1003 (2009)
Yin CG, Yan JY, Appl. Energy, 162, 742 (2016)
Choi CG, Ryu C, Yang W, Chae TY, KOSCO Symposium, December, Gyongju, Korea (2011).
Duan YQ, Duan LB, Wang J, Anthony EJ, Fuel, 242, 374 (2019)
Surywanshi GD, Pillai BBK, Patnaikuni VS, Vooradi R, Anne BS, Energy Conv. Manag., 200, 112050 (2019)
Vu TT, Lim YL, Song D, Mun TY, Moon JH, Sun D, Hwang YT, Lee JG, Park YC, Energy, 194, 116855 (2020)
Barnes I, IEA Clean Coal Centre(2015).
de Diego LF, de las Obras-Loscertales M, Rufas A, Garcia-Labiano F, Gayan P, Abad A, Adanez J, Appl. Energy, 102, 860 (2013)
Hagi H, Le Moullec Y, Nemer M, Bouallou C, Energy, 69, 272 (2014)
Hansen BB, Fogh F, Knudsen NO, Kiil S, Ind. Eng. Chem. Res., 50(8), 4238 (2011)
Lee KJ, Choi SM, Kim TH, Seo SI, J. Korean Soc. Combust., 15(2), 1 (2010)
ISO, witzerland: BSI Standards Publication (2016).
Lim YI, Choi J, Moon HM, Kim GH, Korean Chem. Eng. Res., 54(3), 320 (2016)
Oh CH, Lim YI, Korean Chem. Eng. Res., 56(4), 496 (2018)
Sanaye S, Amani M, Amani P, Sustain. Energy Technol. Assess., 29, 70 (2018)
Panopoulos KD, Fryda L, Karl J, Poulou S, Kakaras E, J. Power Sources, 159(1), 586 (2006)
Dai B, Zhang L, Cui JF, Hoadley A, Zhang L, Fuel Process. Technol., 155, 21 (2017)
He C, Feng Y, Feng D, Zhang X, Steel Res. Int., 89(12), 180006 (2018)
Kotas TJ, The Exergy Method of Thermal Plant Analysis, 1st ed., Paragon Publishing, London(2013).
Park MH, Kim JJ, Chen Y, Kim C, Korean Chem. Eng. Res., 37(5), 752 (1999)
Wheeldon J, Thimsen D, Woodhead Publishing, Oxford, 620-638(2013).
Do TX, Mujahid R, Lim HS, Kim JK, Lim YI, Kim J, Renew. Energy, 151, 30 (2020)
Do TX, Lim YI, Jang S, Chung HJ, Bioresour. Technol., 189, 224 (2015)
Kemp IC, Pinch Analysis and Process Integration, 2nd ed., Butterworth-Heinemann, Amsterdam(2006).
IEA, “World Energy Outlook 2019,” OECD(2019).
Zhai H, Ou Y, Rubin ES, Environ. Sci. Technol., 49(13), 7571 (2015)
Orr FM, SPE J., 23(6), 2444 (2018)
Omoregbe O, Mustapha AN, Steinberger-Wilckens R, El-Kharouf RA, Onyeaka H, Energy Rep., 6, 1200 (2020)
Zheng L, Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture, 1st ed., Woodhead Publishing, Oxford (2011).
Shi Y, Zhong W, Shao Y, Liu X, Appl. Therm. Eng., 150, 1104 (2019)
Wall T, Liu YH, Spero C, Elliott L, Khare S, Rathnam R, Zeenathal F, Moghtaderi B, Buhre B, Sheng CD, Gupta R, Yamada T, Makino K, Yu JL, Chem. Eng. Res. Des., 87(8A), 1003 (2009)
Yin CG, Yan JY, Appl. Energy, 162, 742 (2016)
Choi CG, Ryu C, Yang W, Chae TY, KOSCO Symposium, December, Gyongju, Korea (2011).
Duan YQ, Duan LB, Wang J, Anthony EJ, Fuel, 242, 374 (2019)
Surywanshi GD, Pillai BBK, Patnaikuni VS, Vooradi R, Anne BS, Energy Conv. Manag., 200, 112050 (2019)
Vu TT, Lim YL, Song D, Mun TY, Moon JH, Sun D, Hwang YT, Lee JG, Park YC, Energy, 194, 116855 (2020)
Barnes I, IEA Clean Coal Centre(2015).
de Diego LF, de las Obras-Loscertales M, Rufas A, Garcia-Labiano F, Gayan P, Abad A, Adanez J, Appl. Energy, 102, 860 (2013)
Hagi H, Le Moullec Y, Nemer M, Bouallou C, Energy, 69, 272 (2014)
Hansen BB, Fogh F, Knudsen NO, Kiil S, Ind. Eng. Chem. Res., 50(8), 4238 (2011)
Lee KJ, Choi SM, Kim TH, Seo SI, J. Korean Soc. Combust., 15(2), 1 (2010)
ISO, witzerland: BSI Standards Publication (2016).
Lim YI, Choi J, Moon HM, Kim GH, Korean Chem. Eng. Res., 54(3), 320 (2016)
Oh CH, Lim YI, Korean Chem. Eng. Res., 56(4), 496 (2018)
Sanaye S, Amani M, Amani P, Sustain. Energy Technol. Assess., 29, 70 (2018)
Panopoulos KD, Fryda L, Karl J, Poulou S, Kakaras E, J. Power Sources, 159(1), 586 (2006)
Dai B, Zhang L, Cui JF, Hoadley A, Zhang L, Fuel Process. Technol., 155, 21 (2017)
He C, Feng Y, Feng D, Zhang X, Steel Res. Int., 89(12), 180006 (2018)
Kotas TJ, The Exergy Method of Thermal Plant Analysis, 1st ed., Paragon Publishing, London(2013).
Park MH, Kim JJ, Chen Y, Kim C, Korean Chem. Eng. Res., 37(5), 752 (1999)
Wheeldon J, Thimsen D, Woodhead Publishing, Oxford, 620-638(2013).
Do TX, Mujahid R, Lim HS, Kim JK, Lim YI, Kim J, Renew. Energy, 151, 30 (2020)
Do TX, Lim YI, Jang S, Chung HJ, Bioresour. Technol., 189, 224 (2015)
Kemp IC, Pinch Analysis and Process Integration, 2nd ed., Butterworth-Heinemann, Amsterdam(2006).