Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 19, 2020
Accepted September 21, 2020
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰
Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection
서경대학교 나노융합공학과, 2713 서울시 성북구 서경로 124
Department of Nano Convergence Engineering, Seokyeong University, 124 Seokyeong-ro, Sungbuk-gu, Seoul, 02713, Korea
mjsong@skuniv.ac.kr
Korean Chemical Engineering Research, May 2021, 59(2), 159-164(6), 10.9713/kcer.2020.59.2.159 Epub 3 May 2021
Download PDF
Abstract
부착형(attachable) 타입의 웨어러블 디바이스 적용을 위한 패브릭(fabric)이나 텍스처(textiles) 타입의 고성능 전극 소재 개발에 대한 필요성이 부각되고 있다. 본 연구에서는 유연 전극 소재로 탄소나노튜브 섬유(CNT fibers)를 응용하고자, CNT fibers의 전기화학적 특성과 이를 적용한 비효소적 글루코스 센싱 성능을 확인하였다. CNT fibers의 표면 구조는 주사전자 현미경(SEM)을 이용하여 분석하였으며, 전기화학적 특성 및 센싱 성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. CNT fibers 전극은 낮은 capacitive current와 산화-환원 화학종과 전극 계면 간의 효율적인 direct electron transfer에 의한 우수한 electrochemical activity 등 향상된 전기화학적 특성으로 인해 높은 감도와 넓은 선형 농도 범위, 그리고 낮은 검출 한계 등 우수한 센싱 특성을 보였다. 따라서, 본 연구는 CNT fibers 기반의 고성능 유연 전극 소재 개발을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.
As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.
References
Lu F, Bo L, Guang Y, Yi CH, Qin Z, Xue SY, Biosens. Bioelectron., 97, 196 (2017)
Lee SJ, Yoon HS, Xuan X, Park JY, Sens. Actuators B-Chem., 222, 1144 (2016)
Wang L, Wnag L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H, Adv. Funct. Mater., 28, 180445 (2018)
Xu G, Cheng C, Liu Z, Yuan W, Wu X, Lu Y, Low SS, et al., Adv. Mater. Technol., 4, 180065 (2019)
Lian Y, Wang M, Yang X, Li Z, Yang F, Wang Y, Tai H, Liao Y, Wu J, Wang X, Jiang Y, Tao G, J. Mater. Chem. C, 8, 8399 (2020)
Singha K, Kumar J, Pandit P, Mater. Today Proc., 16, 1518 (2019)
Hatamie A, Angizi S, Kumar S, Pandey CM, Simchi A, Willander M, Malhotra BD, J. Electrochem. Soc., 167, 037546 (2020)
Chuang MC, Windmiller JR, Santhosh P, Pamirez GV, Galik M, Chou TY, Wang J, Electroanalysis, 22, 2511 (2010)
Hu C, Hu S, J. Sens., 2009, 187615 (2009)
Lee J, Lee DM, Jung Y, Park J, Lee HS, Kim YK, Park CR, Jeong HS, Kim SM, Nat. Commun., 10, 2962 (2019)
Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A, Science, 318, 1892 (2007)
Bai YX, Zhang RF, Ye X, Zhu ZX, Xie HH, Shen BY, Cai DL, Liu BF, Zhang CX, Jia Z, Zhang SL, Li XD, Wei F, Nat. Nanotechnol., 13(7), 589 (2018)
Wu AS, Chou TW, Mater. Today, 15, 302 (2012)
Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M, Science, 339(6116), 182 (2013)
Hiremath N, Mays J, Bhat G, Polym. Rev., 57, 339 (2017)
Song MJ, Korean Chem. Eng. Res., 57(5), 606 (2019)
Misak HE, Asmatulu RA, O’Malley M, Jurak E, Mall S, Int. J. Smart Nano Mater., 5, 34 (2014)
Song MJ, Kim JH, Lee SK, Lee JH, Lim DS, Hwang SW, Whang D, Microchim. Acta, 171, 249 (2010)
Torz-Piotrowska R, Wrzyszczyski A, Paprocki K, Szreiber M, Uniszkiewicz C, Staryga E, J. . Achiev. Mater. Manuf. Eng., 37, 486 (2009)
Wu J, Qu Y, Anal. Bioanal. Chem., 385, 1330 (2006)
Felix S, Chakkravarthy BP, Jeong SK, Grace AN, J. Electrochem. Soc., 162(6), H392 (2015)
Bard AJ, Faulkner LR, John Wiley and Sons, New York(1980).
Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R, Biosens. Bioelectron., 25, 832 (2009)
Dung NQ, Patil D, Jung H, Kim D, Biosens. Bioelectron., 42, 280 (2013)
Jiang LC, Zhang WD, Biosens. Bioelectron., 25, 1402 (2010)
Chen J, Zhang WD, Ye JS, Electrochem. Commun., 10, 1268 (2008)
Thirumalai D, Subramani D, Shin B, Park H, Chang SC, Bull. Korean Chem. Soc., 39, 141 (2018)
Lee SJ, Yoon HS, Xuan X, Park JY, Sens. Actuators B-Chem., 222, 1144 (2016)
Wang L, Wnag L, Zhang Y, Pan J, Li S, Sun X, Zhang B, Peng H, Adv. Funct. Mater., 28, 180445 (2018)
Xu G, Cheng C, Liu Z, Yuan W, Wu X, Lu Y, Low SS, et al., Adv. Mater. Technol., 4, 180065 (2019)
Lian Y, Wang M, Yang X, Li Z, Yang F, Wang Y, Tai H, Liao Y, Wu J, Wang X, Jiang Y, Tao G, J. Mater. Chem. C, 8, 8399 (2020)
Singha K, Kumar J, Pandit P, Mater. Today Proc., 16, 1518 (2019)
Hatamie A, Angizi S, Kumar S, Pandey CM, Simchi A, Willander M, Malhotra BD, J. Electrochem. Soc., 167, 037546 (2020)
Chuang MC, Windmiller JR, Santhosh P, Pamirez GV, Galik M, Chou TY, Wang J, Electroanalysis, 22, 2511 (2010)
Hu C, Hu S, J. Sens., 2009, 187615 (2009)
Lee J, Lee DM, Jung Y, Park J, Lee HS, Kim YK, Park CR, Jeong HS, Kim SM, Nat. Commun., 10, 2962 (2019)
Koziol K, Vilatela J, Moisala A, Motta M, Cunniff P, Sennett M, Windle A, Science, 318, 1892 (2007)
Bai YX, Zhang RF, Ye X, Zhu ZX, Xie HH, Shen BY, Cai DL, Liu BF, Zhang CX, Jia Z, Zhang SL, Li XD, Wei F, Nat. Nanotechnol., 13(7), 589 (2018)
Wu AS, Chou TW, Mater. Today, 15, 302 (2012)
Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AWK, Bengio EA, ter Waarbeek RF, de Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M, Science, 339(6116), 182 (2013)
Hiremath N, Mays J, Bhat G, Polym. Rev., 57, 339 (2017)
Song MJ, Korean Chem. Eng. Res., 57(5), 606 (2019)
Misak HE, Asmatulu RA, O’Malley M, Jurak E, Mall S, Int. J. Smart Nano Mater., 5, 34 (2014)
Song MJ, Kim JH, Lee SK, Lee JH, Lim DS, Hwang SW, Whang D, Microchim. Acta, 171, 249 (2010)
Torz-Piotrowska R, Wrzyszczyski A, Paprocki K, Szreiber M, Uniszkiewicz C, Staryga E, J. . Achiev. Mater. Manuf. Eng., 37, 486 (2009)
Wu J, Qu Y, Anal. Bioanal. Chem., 385, 1330 (2006)
Felix S, Chakkravarthy BP, Jeong SK, Grace AN, J. Electrochem. Soc., 162(6), H392 (2015)
Bard AJ, Faulkner LR, John Wiley and Sons, New York(1980).
Upadhyay S, Rao GR, Sharma MK, Bhattacharya BK, Rao VK, Vijayaraghavan R, Biosens. Bioelectron., 25, 832 (2009)
Dung NQ, Patil D, Jung H, Kim D, Biosens. Bioelectron., 42, 280 (2013)
Jiang LC, Zhang WD, Biosens. Bioelectron., 25, 1402 (2010)
Chen J, Zhang WD, Ye JS, Electrochem. Commun., 10, 1268 (2008)
Thirumalai D, Subramani D, Shin B, Park H, Chang SC, Bull. Korean Chem. Soc., 39, 141 (2018)