ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 20, 2021
Accepted February 16, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Steam Reforming of Toluene Over Ni/Coal Ash Catalysts: Effect of Coal Ash Composition

1Advanced Energy Technology, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113 Korea 2Climate Change Research Division, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129 Korea 3Future Energy Plant Convergence Research Center, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129 Korea
Korean Chemical Engineering Research, May 2021, 59(2), 232-238(7), 10.9713/kcer.2021.59.2.232 Epub 3 May 2021
downloadDownload PDF

Abstract

The development of a low cost catalyst with high performance and small amount of carbon deposition on catalyst from toluene steam reforming were investigated by using coal ash as a support material. Ni-loaded coal ash catalyst showed similar catalytic activi ty for toluene steam reforming compared with the Ni/Al2O3. At 800oC, the toluene conversionwas 77% for Ni/TAL, 68 % for Ni/KPU and 78% for Ni/Al2O3. Ni/TAL showed similar toluene conversion to Ni/Al2O3.However, Ni/KPU produced higher hydrogen yield at relatively lower toluene conversion. Ni/KPU catalyst showed aremarkable ability of suppressing the carbon deposition. The difference in coke deposition and hydrogen yield is due to the composition of KPU ash (Ca and Fe) which increase coke resistance and water gas shift reaction. This study suggests that coal ash catalysts have great potential for the application in the steam reforming of biomass tar.

References

Cao JP, Liu TL, Ren J, Zhao XY, Wu Y, Wang JX, Ren XY, Wei XY, J. Anal. Appl. Pyrolysis, 127, 82 (2017)
Setyawan D, Yoo JH, Kim SD, Cho HK, Rhim YJ, Lim JH, Lee SH, Chun DH, Korean J. Chem. Eng., 56, 547 (2018)
Han SW, Seo MW, Park SJ, Son SH, Yoon SJ, et al., Korean J. Chem. Eng., 57, 874 (2019)
Guan G, Kaewpanha M, Hao X, Abudula A, Renew. Sust. Energ. Rev., 58, 450 (2016)
Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355 (2011)
Oh G, Park SY, Seo MW, Ra HW, Mun TY, Lee JG, Yoon SJ, Int. J. Green Energy, 16, 333 (2019)
Oh G, Park SY, Seo MW, Kim YK, Ra HW, Lee JG, Yoon SJ, Renew. Energy, 86, 841 (2016)
Rios MLV, Gonzalez AM, Lora EES, del Olmo OAA, Biomass Bioenerg., 108, 345 (2018)
Schmidt S, Giesa S, Drochner A, Vogel H, Catal. Today, 175(1), 442 (2011)
Heo DH, Lee R, Hwang JH, Sohn JM, Catal. Today, 265, 95 (2016)
Quitete CPB, Bittencourt RCP, Souza MMVM, Catal. Lett., 145(2), 541 (2015)
Kannari N, Oyama Y, Takarada T, Int. J. Hydrog. Energy, 42(15), 9611 (2017)
Guan G, Chen G, Kasai Y, Lim EWC, Hao H, Kaewpanha MA, Fushimi AC, Tsutsumi A, Appl. Catal. B: Environ., 115-116, 1519 (2012)
Balakrishnan M, Batra VS, Hargreaves JSJ, Pulford ID, Green Chem., 13, 16 (2011)
Bepari S, Pradhan NC, Dalai AK, Catal. Today, 291, 36 (2017)
Ashok J, Kathiraser Y, Ang ML, Kawi S, Catal. Sci. Technol., 5, 4398 (2015)
Lee HJ, Kim WH, Lee KB, Yoon WL, Korean Chem. Eng. Res., 56(6), 914 (2018)
Lee SH, Lim H, Kim SD, Jeon CH, Korean Chem. Eng. Res., 52(2), 233 (2014)
Herman AP, Yusup S, Shahbaz M, Chem. Eng. Trans., 52, 1249 (2016)
Blissett RS, Rowson NA, Fuel, 97, 1 (2012)
Artetxe M, Alvarez J, Nahil MA, Olazar M, Williams PT, Energy Conv. Manag., 136, 119 (2017)
Swierczynski D, Courson C, Kiennemann A, Chem. Eng. Process., 47(3), 508 (2008)
Dieuzeide ML, Laborde M, Amadeo N, Cannilla C, Bonura G, Frusteri F, Int. J. Hydrog. Energy, 41(1), 157 (2016)
Do JY, Kwak BS, Park NK, Lee TJ, Lee ST, Jo SW, Cha MS, Jeon MK, Kang M, Int. J. Hydrog. Energy, 42(36), 22687 (2017)
Pala LPR, Wang Q, Kolb G, Hessel V, Renew. Energy, 101, 484 (2017)
Zamboni I, Courson C, Kiennemann A, Appl. Catal. B: Environ., 203, 154 (2017)
Adnan MA, Muraza O, Razzak SA, Hossain MM, de Lasa HI, Energy Fuels, 31(7), 7471 (2017)
Ahmed T, Xiu SN, Wang LJ, Shahbazi A, Fuel, 211, 566 (2018)
Ashok J, Kawi S, Appl. Catal. A: Gen., 490, 24 (2015)
Rodemerck U, Scheider M, Linke D, Catal. Commun., 102, 98 (2017)
Josuinkas FM, Quitete CPB, Ribeiro NFP, Souza MMVM, Fuel Process. Technol., 121, 76 (2014)
Park SY, Oh G, Kim K, Seo MW, Ra HW, Mun TY, Lee JG, Yoon SJ, Renew. Energy, 105, 76 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로