Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 20, 2021
Accepted February 8, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
태양열 유동층 흡열기의 기체 열흡수 특성
Characteristics of Heat Absorption by Gas in a Directly-irradiated Fluidized Bed Particle Receiver
한국교통대학교 응용화학에너지공학부, 27469 충북 충주시 대소원면 대학로 50
School of Chemical and Energy Engineering, Korea National University of Transportation, Chungju-si, Chungbuk, 27469, Korea
kswcfb@ut.ac.kr
Korean Chemical Engineering Research, May 2021, 59(2), 239-246(8), 10.9713/kcer.2021.59.2.239 Epub 3 May 2021
Download PDF
Abstract
태양열 SiC 입자 유동층 흡열기(내경 50 mm, 높이 150 mm)에서 수력학적 특성 및 기체 열흡수 특성이 연구되었다. 측정 구간 내에서, 기체 속도가 증가할수록 유동층 내 고체체류량은 일정하였으나, 유사한 기체속도 구간(Ug = 0.03-0.05 m/s)에서 미세한 SiC 입자(SiC II; dp=52 μm, ρs=2992 kg/m3)는 굵은 SiC 입자(SiC I; dp=123 μm, ρs=3015 kg/m3) 대비 유동층 내 압력요동의 상대 표준편차는 낮았으며, 프리보드 내 고체체류량은 상대적으로 높은 값을 나타내었다. 미세한 SiC II 입자는 굵은 SiC I 입자 대비 일사량의 변화에 관계없이 상대적으로 높은 일사량 당 흡열기 입출구 온도차를 보였고, 이는 상대적으로 균일한 유동층 내 입자 거동에 의한 층 표면 수용 열의 효율적인 열확산 효과에 더하여, 프리보드 영역에서 비산된 입자에 의한 추가적인 태양열 흡수 및 기체로의 열전달 효과에 기인한다. 본 시스템에서 기체속도 및 유동화 수가 증가할수록 열 흡수 속도 및 열효율은 증가하였다. SiC II 입자는 최대 17.8W의 열 흡수 속도와 14.8%의 열효율을 보였고, 이는 SiC I 입자 대비 약 33% 높은 값을 나타내었다.
Characteristics of hydrodynamics and heat absorption by gas in a directly-irradiated fluidized bed particle receiver (50 mm-ID X 150 mm high) of SiC particles have been determined. Solid holdups of SiC particles show almost constant values with increasing gas velocity. Fine SiC particles (SiC II; dp=52 μm, ρs=2992 kg/m3) showed low values of relative standard deviation of pressure drop across bed but high solids holdups in the freeboard region compared to coarse SiC particles (SiC I; dp=123 μm, ρs=3015 kg/m3). The SiC II exhibited higher values of temperature difference normalized by irradiance due to the effect of additional solar heat absorption and heat transfer to the gas by the particles entrained in the freeboard region in addition to the efficient thermal diffusion of the solar heat received at bed surface. Heat absorption rate and efficiency increased with increasing the gas velocity and fluidization number. The SiC II showed maximum heat absorption rate of 17.8 W and thermal efficiency of 14.8%, which are about 33% higher than those of SiC I within the experimental gas velocity range.
References
Hwanag H, Mun J, Kim J, Korean J. Chem. Res., 58, 381 (2020)
Miller J, Nwe K, Youn YJ, Hwang KJ, Choi CM, Mola PWII, Kim YJ, Jin SH, Korean J. Chem. Eng., 36(6), 996 (2019)
Farjana SH, Huda N, Mahmud MP, Saidur R, Renew. Sust. Energ. Rev., 82, 2270 (2018)
Jia T, Dai Y, Wang R, Renew. Sust. Energ. Rev., 88, 278 (2018)
Li S, Kong W, Zhang H, Sabatier F, Ansart R, Flamant G, Baeyens J, In AIP Conference Proceedings, 2126, July, Taiwan, 140002 (2019).
Tregambi C, Chirone R, Montagnaro F, Salatino P, Solimene R, Sol. Energy, 129, 85 (2016)
Flamant G, AIChE J., 28, 529 (1982)
Gokon N, Takahashi S, Yamamoto H, Kodama T, Int. J. Hydrog. Energy, 33(9), 2189 (2008)
Matubara K, Kazuma Y, Sakurai A, Kodama T, Gokon N, Choi HS, Nagase Y, Journal of the Japan Institute of Energy, 94, 1323 (2015).
Tregambi C, Montagnaro F, Salatino P, Solimene R, In AIP Conference Proceedings, 1850, June, 090007(2017).
Almendros-Ibanez JA, Fernandez-Torrijos M, Diaz-Heras M, Belmonte JF, Sobrino C, Sol. Energy, 192, 193 (2019)
Ma Z, Mehos M, Glatzmaier G, Sakadjian BB, Energy Procedia, 69, 1349 (2015)
Ho CK, Sol. Energy, 152, 38 (2017)
Calderon A, Barreneche C, Palacios A, Segarra M, Prieto C, Rodriguez-Sanchez A, Fernandez AI, Energy Sources, 1, e63 (2019)
Koenigsdorff R, Kienzle P, Solar. Energy Materials, 24, 279 (1991)
Werther J, Koenigsdorff R, Fischer M, Preprints of Annual Meeting Society of Chemical Engineers., Japan Sendai, 28 (1994).
Park SH, Yeo CE, Lee MJ, Kim SW, Processes, 8, 967 (2020)
Roberto B, Ubaldo C, Stefano M, Roberto I, Elisa S, Paolo M, Sol. Energy, 84(6), 1027 (2010)
Kunii D, Levenspiel O, “Fluidization Engineering,” 2nd ed., Butterworth-Heinemann(1991).
Bi HTT, Chem. Eng. Sci., 62(13), 3473 (2007)
Johnsson F, Zijerveld RC, Schouten JC, van den Bleek CM, Leckner B, Int. J. Multiph. Flow, 26(4), 663 (2000)
Go ES, Kang SY, Seo SB, Kim HW, Lee SH, Korean J. Chem. Res., 58, 651 (2020)
Kim SW, Kim SD, Int. J. Heat Mass Transf., 64, 269 (2013)
Kim SW, Yeo CE, Lee DY, Energies, 12, 293 (2019)
Abrahamsen AR, Geldart D, Powder Technol., 26, 35 (1980)
Gomez-Garcia F, Gauthier D, Flamant G, Appl. Energy, 190, 510 (2017)
Baccoli R, Frattolillo A, Mastino C, Curreli S, Ghiani E, Energy Conv. Manag., 164, 482 (2018)
Miller J, Nwe K, Youn YJ, Hwang KJ, Choi CM, Mola PWII, Kim YJ, Jin SH, Korean J. Chem. Eng., 36(6), 996 (2019)
Farjana SH, Huda N, Mahmud MP, Saidur R, Renew. Sust. Energ. Rev., 82, 2270 (2018)
Jia T, Dai Y, Wang R, Renew. Sust. Energ. Rev., 88, 278 (2018)
Li S, Kong W, Zhang H, Sabatier F, Ansart R, Flamant G, Baeyens J, In AIP Conference Proceedings, 2126, July, Taiwan, 140002 (2019).
Tregambi C, Chirone R, Montagnaro F, Salatino P, Solimene R, Sol. Energy, 129, 85 (2016)
Flamant G, AIChE J., 28, 529 (1982)
Gokon N, Takahashi S, Yamamoto H, Kodama T, Int. J. Hydrog. Energy, 33(9), 2189 (2008)
Matubara K, Kazuma Y, Sakurai A, Kodama T, Gokon N, Choi HS, Nagase Y, Journal of the Japan Institute of Energy, 94, 1323 (2015).
Tregambi C, Montagnaro F, Salatino P, Solimene R, In AIP Conference Proceedings, 1850, June, 090007(2017).
Almendros-Ibanez JA, Fernandez-Torrijos M, Diaz-Heras M, Belmonte JF, Sobrino C, Sol. Energy, 192, 193 (2019)
Ma Z, Mehos M, Glatzmaier G, Sakadjian BB, Energy Procedia, 69, 1349 (2015)
Ho CK, Sol. Energy, 152, 38 (2017)
Calderon A, Barreneche C, Palacios A, Segarra M, Prieto C, Rodriguez-Sanchez A, Fernandez AI, Energy Sources, 1, e63 (2019)
Koenigsdorff R, Kienzle P, Solar. Energy Materials, 24, 279 (1991)
Werther J, Koenigsdorff R, Fischer M, Preprints of Annual Meeting Society of Chemical Engineers., Japan Sendai, 28 (1994).
Park SH, Yeo CE, Lee MJ, Kim SW, Processes, 8, 967 (2020)
Roberto B, Ubaldo C, Stefano M, Roberto I, Elisa S, Paolo M, Sol. Energy, 84(6), 1027 (2010)
Kunii D, Levenspiel O, “Fluidization Engineering,” 2nd ed., Butterworth-Heinemann(1991).
Bi HTT, Chem. Eng. Sci., 62(13), 3473 (2007)
Johnsson F, Zijerveld RC, Schouten JC, van den Bleek CM, Leckner B, Int. J. Multiph. Flow, 26(4), 663 (2000)
Go ES, Kang SY, Seo SB, Kim HW, Lee SH, Korean J. Chem. Res., 58, 651 (2020)
Kim SW, Kim SD, Int. J. Heat Mass Transf., 64, 269 (2013)
Kim SW, Yeo CE, Lee DY, Energies, 12, 293 (2019)
Abrahamsen AR, Geldart D, Powder Technol., 26, 35 (1980)
Gomez-Garcia F, Gauthier D, Flamant G, Appl. Energy, 190, 510 (2017)
Baccoli R, Frattolillo A, Mastino C, Curreli S, Ghiani E, Energy Conv. Manag., 164, 482 (2018)