Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 25, 2021
Accepted February 6, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 광학적 및 전기적 특성
Optical and Electrical Characteristics of Fluorocarbon Films Deposited in a High-Density C4F8 Plasma
아주대학교 화학공학과, 에너지시스템학과, 16499 경기도 수원시 영통구 월드컵로 206 1성균관대학교 화학공학과, 16419 경기도 수원시 장안구 서부로 2066
Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon, 16499, Korea 1School of Chemical Engineering, SungKyunKwan University, Seobu-ro 2066, Jangan-gu, Suwon, 16419, Korea
changkoo@ajou.ac.kr
Korean Chemical Engineering Research, May 2021, 59(2), 254-259(6), 10.9713/kcer.2021.59.2.254 Epub 3 May 2021
Download PDF
Abstract
고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 광학적 및 전기적 특성을 소스파워와 압력을 변화하며 분석하였다. 고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 F/C 비율은 2단계 증착 메커니즘의 작용으로 소스파워가 증가할수록 증가하였고 압력이 증가할수록 감소하였다. 고밀도 C4F8 플라즈마에서 증착된 불화탄소막의 F/C 비율 변화는 불화탄소막의 광학적 및 전기적 특성 변화에 직접적으로 영향을 끼쳤다. 즉, 불화탄소막의 굴절률은 F/C 비율 변화 양상과는 달리 소스파워가 증가할수록 감소하였고 압력이 증가할수록 증가하였는데 이는 F/C 비율이 증가할수록 전자분극작용이 억제되고 불화탄소막의 망상조직이 약화되어 굴절률이 감소하기 때문이었다. 불화탄소막의 비저항은 F/C 비율 변화와 같이 소스파워가 증가할수록 증가하였고 압력이 증가할수록 감소하였는데 이는 F/C 비율이 증가할수록 주변 전자들을 반발하려는 경향이 강해져서 비저항이 증가하기 때문이었다. 고밀도 C4F8 플라즈마에서 증착된 불화탄소막의F/C 비율 조절로 불화탄소막의 광학적 및 전기적 특성을 직접적으로 변화할 수 있으므로 불화탄소막이 반도체소자제 조공정에서 저 유전상수 물질 대체용으로 가능할 수 있음이 예상된다.
Optical and electrical characteristics of the fluorocarbon films deposited in a high-density C4F8 plasma under various source powers and pressures were investigated. The F/C ratio of the fluorocarbon film deposited in a highdensity C4F8 plasma increased with increasing source power and decreasing pressure due to two-step deposition mechanism. The change in the F/C ratio of the film directly affected the optical and electrical characteristics of the fluorocarbon films deposited in a high-density C4F8 plasma. The refractive index of the fluorocarbon film increased with decreasing source power and increasing pressure contrary to the dependence of the film’s F/C ratio on the source power and pressure. This was because the increase in the F/C ratio suppressed electronic polarization and weakened the network structures of the film. The resistivity of the fluorocarbon film showed the same behavior as its F/C ratio. In other words, the resistivity increased with increasing source power and decreasing pressure, resulting from stronger repellence of electrons at higher F/C ratios. This work offers the feasibility of the use of the fluorocarbon films deposited in a high-density C4F8 plasma as an alternative to low dielectric constant materials because the optical and electrical properties of the fluorocarbon film can be directly controlled by its F/C ratio.
References
Kim JH, Kim CK, Korean J. Chem. Eng., 37, 374 (2021)
Kim JH, Cho SW, Kim CK, Chem. Eng. Technol., 40(12), 2251 (2017)
Kim JH, Cho SW, Park CJ, Chae H, Kim CK, Thin Solid Films, 637, 43 (2017)
Cho SW, Kim CK, Lee JK, Moon SH, Chae H, J. Vac. Sci. Technol. A, 30, 051301 (2012)
Ullal SJ, Singh H, Daugherty J, Vahedi V, Aydil ES, J. Vac. Sci. Technol. A, 20, 1195 (2002)
Yang GH, Oh SW, Kang ET, Neoh KG, J. Vac. Sci. Technol. A, 20, 1955 (2002)
Han LCM, Timmons RB, Lee WW, J. Vac. Sci. Technol. B, 18(2), 799 (2000)
Shirafuji T, Yoshiyasu N, Tachibana K, Thin Solid Films, 515(9), 4111 (2007)
Agraharam S, Hess DW, Kohl PA, Allen SAB, J. Electrochem. Soc., 148(5), F102 (2001)
Valentini L, Braca E, Kenny JM, Lozzi L, Santucci S, Mater. Lett., 51, 514 (2001)
Jacobsohn LG, Maia da Costa MEH, Trava-Airoldi VJ, Freire FL, Diam. Relat. Mat., 12, 2037 (2003)
Standaert TEFM, Hedlund C, Joseph EA, Oehrlein GS, Dalton TJ, J. Vac. Sci. Technol. A, 22(1), 53 (2004)
Labelle CB, Donnelly VM, Bogart GR, Opila RL, Kornblit A, J. Vac. Sci. Technol. A, 22(6), 2500 (2004)
Valentini L, Braca E, Kenny JM, Lozzi L, Santucci S, J. Vac. Sci. Technol. A, 19(5), 2168 (2001)
Endo K, Shinoda K, Tatsumi T, J. Appl. Phys., 86, 2739 (1999)
Kim JH, Cho SW, Kim CK, Chem. Eng. Technol., 40(12), 2251 (2017)
Kim JH, Cho SW, Park CJ, Chae H, Kim CK, Thin Solid Films, 637, 43 (2017)
Cho SW, Kim CK, Lee JK, Moon SH, Chae H, J. Vac. Sci. Technol. A, 30, 051301 (2012)
Ullal SJ, Singh H, Daugherty J, Vahedi V, Aydil ES, J. Vac. Sci. Technol. A, 20, 1195 (2002)
Yang GH, Oh SW, Kang ET, Neoh KG, J. Vac. Sci. Technol. A, 20, 1955 (2002)
Han LCM, Timmons RB, Lee WW, J. Vac. Sci. Technol. B, 18(2), 799 (2000)
Shirafuji T, Yoshiyasu N, Tachibana K, Thin Solid Films, 515(9), 4111 (2007)
Agraharam S, Hess DW, Kohl PA, Allen SAB, J. Electrochem. Soc., 148(5), F102 (2001)
Valentini L, Braca E, Kenny JM, Lozzi L, Santucci S, Mater. Lett., 51, 514 (2001)
Jacobsohn LG, Maia da Costa MEH, Trava-Airoldi VJ, Freire FL, Diam. Relat. Mat., 12, 2037 (2003)
Standaert TEFM, Hedlund C, Joseph EA, Oehrlein GS, Dalton TJ, J. Vac. Sci. Technol. A, 22(1), 53 (2004)
Labelle CB, Donnelly VM, Bogart GR, Opila RL, Kornblit A, J. Vac. Sci. Technol. A, 22(6), 2500 (2004)
Valentini L, Braca E, Kenny JM, Lozzi L, Santucci S, J. Vac. Sci. Technol. A, 19(5), 2168 (2001)
Endo K, Shinoda K, Tatsumi T, J. Appl. Phys., 86, 2739 (1999)