ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 3, 2020
Accepted December 9, 2020
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Comparative Study on Convective and Microwave-Assisted Heating of Zeolite-Monoethanolamine Adsorbent Impregnation Process for CO2 Adsorption

Department of Chemical Engineering, Universitas Brawijaya, Jalan Mayjen Haryono 167, Malang, Indonesia
rama.oktavian@ub.ac.id
Korean Chemical Engineering Research, May 2021, 59(2), 260-268(9), 10.9713/kcer.2020.59.2.260 Epub 3 May 2021
downloadDownload PDF

Abstract

Adsorption is the most promising technology used to adsorb CO2 to reduce its concentration in the atmosphere due to its functional effectiveness. Various porous materials have been extensively synthesized to boost CO2 adsorption efficiency, for example, zeolite. Here, we report the synthesis process of zeolite adsorbent impregnated with amine, combining the benefit of these two substances. We compared conventional heating with microwave-assisted heating by varying concentrations of monoethanolamine in methanol (10% v/v and 40% v/v) as a liquid solution. The results showed that monoethanolamine impregnation helps significantly increase adsorption capacity, where adsorption occurs as a physisorption and not as chemisorption due to the adsorbent’s steric hindrance effect. The highest adsorption capacity of 0.3649 mmol CO2 / gram adsorbent was reached by microwave exposure for 10 minutes. This work also reveals that a decrease in CO2 adsorption capacity was observed at a longer exposure period, and it reached a constant 40-minute adsorption rate. Impregnating activated zeolite with 40% monoethanolamine for 10 minutes in addition to microwave exposure (0.8973 mmol CO2 / gram adsorbent) is the maximum adsorption ability achieved.

References

Olivier J, Peters J, PBL Netherlands Environ. Assess. Agency (2018).
Kim YE, Lim JA, Jeong SK, Yoon YI, Bae ST, Nam SC, Bull. Korean Chem. Soc. (2013).
Mahi MR, Mokbel I, Negadi L, Dergal F, Jose J, J. Mol. Liq. (2019).
Sazali N, Wan Salleh WN, Ismail AF, Ismail NH, Kadirgama K, Rev. Chem. Eng. (2019).
Ansaloni L, Salas-Gay J, Ligi S, Baschetti MG, J. Memb. Sci. (2017).
Yu X, Yang J, Yan J, Tu ST, Handb. Clean Energy Syst., 2015.
Song C, Liu Q, Deng S, Li H, Kitamura Y, Renew. Sustain. Energy Rev. (2019).
Pardakhti M, Jafari T, Tobin Z, Dutta B, Moharreri E, Shemshaki, Suib S, Srivastava R, ACS Appl. Mater. Interfaces. (2019).
Porter RTJ, Fairweather M, Kolster C, Mac Dowell N, Shah N, Woolley RM, Int. J. Greenh. Gas Control (2017).
Yang H, Fan S, Lang X, Wang Y, Nie J, Chinese J. Chem. Eng. (2011).
Idem R, Supap T, Shi H, Gelowitz D, Ball M, Campbell C, Tontiwachwuthikul P, Int. J. Greenh. Gas Control. (2015).
Lee SC, Hsieh CC, Chen CH, Chen YS, Aerosol Air Qual. Res. (2013).
Giordano L, Roizard D, Favre E, Int. J. Greenh. Gas Control (2018).
Gao F, Wang S, Chen G, Duan J, Dong J, Wang W, Adsorption (2020).
Krishnamurthy S, Blom R, Ferrari MC, Brandani S, Adsorption (2020).
Unveren EE, Monkul BO, Sarioglan S, Karademir N, Alper E, Petroleum, 3, 37 (2017)
Lee SY, Park SJ, J. Ind. Eng. Chem. (2015).
Lee CH, Hyeon DH, Jung H, Chung W, Jo DH, Shin DK, Kim SH, J. Ind. Eng. Chem. (2015).
Wang Q, Luo J, Zhong Z, Borgna A, Energy Environ. Sci. (2011).
Chan WH, Mazlee MN, Ahmad ZA, Ishak MAM, Shamsul JB, J. Mater. Cycles Waste Manag. (2017).
Zhao P, Zhang G, Hao L, Adsorption (2020).
Zhang G, Zhao P, Hao L, Xu Y, Cheng H, Sep. Purif. Technol. (2019).
Zhao P, Zhang G, Xu Y, Lv YK, Yang Z, Cheng H, Energy and Fuels (2019).
Chen C, Bhattacharjee S, Appl. Surf. Sci., 396, 1515 (2017)
Singh G, Lakhi KS, Kim IY, Kim S, Srivastava S, Naidu PR, Vinu A, ACS Appl. Mater. Interfaces (2017).
Huang YF, Chiueh PT, Shih CH, Lo SL, Sun LP, Zhong Y, Qiu CS, Energy, 84, 75 (2015)
Yin CG, Bioresour. Technol., 120, 273 (2012)
McGurk SJ, Martin CF, Brandani S, Sweatman MB, Fan XF, Appl. Energy, 192, 126 (2017)
Nigar H, Garcia-Banos B, Penaranda-Foix FL, Catala-Civera JM, Mallada R, Santamaria J, AIChE J., 62(2), 547 (2016)
Kalantarifard A, Ghavaminejad A, Yang GS, J. Mater. Cycles Waste Manag., 19, 394 (2017)
Ates A, Akgul G, Powder Technol., 287, 285 (2016)
Zhu YJ, Chen F, Chem. Rev., 114(12), 6462 (2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로