ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 6, 2021
Accepted February 19, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Cu-La-Al/honeycomb 촉매를 이용한 저독성 추진제 분해

Decomposition of Low-toxic Propellant by Cu-La-Al/honeycomb Catalysts

공주대학교 화학공학과, 31080 충남 천안시 서북구 천안대로 1223-24 1국방과학연구소, 34186 대전광역시 유성구 유성우체국 사서함 35호
Department of Chemical Engineering, Kongju National University, 1223-24 Cheonan-daero, Cheonan, Chungcheongnam-do, 31080, Korea 1Agency for Defense Development, Yuseong P.O. Box 35, Deajeon, 34186, Korea
jkjeon@kongju.ac.kr
Korean Chemical Engineering Research, May 2021, 59(2), 296-303(8), 10.9713/kcer.2021.59.2.296 Epub 3 May 2021
downloadDownload PDF

Abstract

본 연구의 목적은 저독성 추진제인 ammonium dinitramide (ADN) 기반 액체 추진제 분해용 촉매로서 Cu가 담지된 honeycomb 촉매의 적용 가능성을 고찰하는 것이다. honeycomb 지지체 위에 구리, 란타늄 및 알루미나 혼합물을 wash coating 방법으로 담지하여 Cu-La-Al/honeycomb 촉매를 제조하였다. 금속 담지량이 Cu-La-Al/honeycomb 촉매의 물리·화학적 특성에 미치는 영향을 분석하였으며, ADN 기반 액체 추진제의 저온 분해 성능에 미치는 영향을 고찰하였다. Wash coating의 횟수가 증가할수록 금속의 담지량이 증가하였으며, 활성금속인Cu의 담지량을 4.1 wt%까지 증가시킬 수 있었다. Cu-La-Al/honeycomb 촉매의 BET 표면적은 3.1~4.1 m2/g 범위 내에 있었으며, 미세기공은 거의 존재하지 않으면서 약 20~200 nm 범위의 메조기공과 거대기공이 발달한 기공 구조를 가지고 있음을 확인하였다. Cu (2.7 wt%)-La-Al/honeycomb 촉매가 ADN 기반 액체 추진제의 분해 반응에서 활성이 가장 뛰어났으며, 그 이유는 표면적과 기공부피가 가장 크고 메조기공과 거대기공이 가장 잘 발달했기 때문으로 해석할 수 있다.
The objective of this study is to investigate the applicability of a Cu-supported honeycomb catalyst as a catalyst for decomposition of a low toxic liquid propellant based on ammonium dinitramide (ADN). A mixture of copper, lanthanum, and alumina was supported on the honeycomb support by wash coating to prepare a Cu-La-Al/ honeycomb catalyst. We elucidated that the effect of metal loading on the physicochemical properties of Cu-La-Al/ honeycomb catalyst and catalytic performance in decomposition of the ADN-based liquid propellant. As the number of wash coatings increased, the amount of active metal Cu was increased to 4.1 wt%. The BET surface area of the Cu-La-Al/honeycomb catalyst was in the range of 3.1~4.1 m2/g. The micropores were hardly present in Cu-La-Al/honeycomb catalysts, however, the mesopores and macropores were well developed. The Cu (2.7 wt%)-La-Al/honeycomb catalyst exhibited the highest activity in the decomposition of the ADN-based liquid propellant, which is attributed to the largest surface area, the largest pore volume, and the well-developed mesopores and macropores.

References

Maleix C, Chabernaud P, Brahmi R, Beauchet R, et al., Acta Astronaut., 158, 407 (2019)
SoaresNetor TG, Gobbo-Ferreirar J, Cobo AJG, Cruz GM, Brazilian J. Chem. Eng., 20(3), 273 (2003)
Spores RA, Masse R, Kimbrel S, McLean C, 49th AIAA/ASME/SAE/ASEE Joint of Propulsion Conference, July, Orlando (2015).
Jang IJ, Jang YB, Shin HS, Shin NR, Kim SK, Yu MJ, Cho SJ, Proceedings of the 18th International Conference on Composite Materials, August, Jeju (2011).
Amrousse R, Hori K, Fetimi W, Farhat K, Appl. Catal. B: Environ., 127, 121 (2012)
Hong S, Heo S, Kim W, Jo YM, Park Y, Jeon J, Catalysts, 9, 80 (2019)
Chai WS, Cheah KH, Koh KS, Chin J, Chik TFWK, Chem. Eng. J., 296, 19 (2016)
Tanaka N, Matsuo T, Furukawa K, Nishida M, Suemori S, Yasutake A, Mitsubishi Heavy Industries Technical Review., 48(4), 44 (2011).
McLean CH, Deininger WD, Joniatis J, Aggarwal PK, et al., 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July, Cleveland (2014).
Ide Y, Takahashi T, Iwai K, Nozoe K, Habu H, Tokudome S, Procedia Eng., 99(2014), 332 (2015)
Xiaoguang REN, Minghui LI, Aiqin W, Lin LI, Xiaodong W, Tao Z, Chinese J. Catal., 28(1), 1 (2007)
Kang S, Master Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea (2012).
Agnihotri R, Oommen C, RSC Adv., 8(40), 22293 (2018)
Yang R, Thakre P, Yang V, Combust., Explos. Shock Waves, 41, 657 (2005)
Hong S, Heo S, Jo YM, Kim T, Jeon J, Korean Soc. Propuls. Eng., 20(7), 1319 (2016)
Zhang T, Li GX, Yu YS, Sun ZY, Wang M, Chen J, Energy Conv. Manag., 87, 965 (2014)
Kleimark J, Delanoe R, Demaire A, Brinck T, Theor. Chem. Acc., 132(12), 1412 (2013)
Kim WR, Park MJ, Kim SH, Jeon JK, Jo YM, Appl. Chem. Eng., 30(5), 591 (2019)
Amrousse R, Katsumi T, Itouyama N, Azurna N, Kagawa H, Hatai K, Ikeda H, Hori K, Combust. Flame, 162(6), 2686 (2015)
Vyazovkin S, Wight CA, J. Phys. Chem. A, 101(31), 5653 (1997)
Gronland TA, Westerberg B, Bergman G, Anflo K, Brandt J, et al., US Patent No. 7,137,244(2006).
Giani L, Cristiani C, Groppi G, Tronconi E, Appl. Catal. B: Environ., 62(1-2), 121 (2006)
Jiang P, Lu G, Guo Y, Guo Y, Zhang S, Wang X, Surf. Coat. Technol., 190(2-3), 314 (2005)
Choi HT, Mok JK, Lee EH, Yoo JS, Lee JW, Korean Soc. Energy., 4(2), 288 (1995)
Yoo DS, Jeon JK, Clean Technol., 25(3), 256 (2019)
Meille V, Appl. Catal. A: Gen., 315, 1 (2006)
Toyao T, Jing Y, Kon K, Hayama T, Nagaoka S, Shimizu K, Chem. Lett., 47(8), 1036 (2018)
Kim M, Kim J, Kim H, Lee J, Park YC, Jeon JK, J. Nanosci. Nanotechnol., 20, 4466 (2020)
Heo SJ, Kim MJ, Lee JS, Park YC, Jeon JK, Korean J. Chem. Eng., 36(5), 660 (2019)
Thomms M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS, Pure Appl. Chem., 87(9-10), 1051 (2015)
Renuga D, Jeyasundari J, Athithan AS, Jacob YBA, Mater. Res. Express, 7(4), 045007 (2020)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로