Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 6, 2021
Accepted May 5, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
젖산 연료전지용 효소전극 제작 및 특성 분석
Fabrication and Characterization of Enzyme Electrode for Lactate Fuel Cell
1경상국립대학교 화학공학과 및 그린에너지 연구소, 52828 경상남도 진주시 진주대로 501 2경상국립대학교 나노신소재융합공학과, 52828 경상남도 진주시 진주대로 501
1Department of Chemical Engineering and RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Korea 2Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Korea
cj_kim@gnu.ac.kr
Korean Chemical Engineering Research, August 2021, 59(3), 373-378(6), 10.9713/kcer.2021.59.3.373 Epub 20 July 2021
Download PDF
Abstract
본 연구는 땀에 존재하는 젖산을 연료로 사용하여 전기를 생산하는 웨어러블 연료전지용 고전력 젖산 산화효소 전극을 개발하는 데 그 목적이 있다. 유연성 있는 탄소종이 기반의 고정화효소 전극을 제작하고 평가하였다. 전해질 내젖산농도 증가에 따라 젖산 산화효소(lactate oxidase, LOx)의 촉매작용으로 전류생성량이 증가하였다. 금 나노입자가 부착된 탄소종이에 고정화된 LOx가 탄소종이에 부착된 LOx보다 1.5배 많은 전류를 생성하였다. 빌리루빈 산화효소(bilirubin oxidase, BOD)가 고정화된 cathode는 질소로 퍼지(purge)된 전해질보다 산소로 포화된 전해질에서 높은 환원전류를 발생시켰다. 두 전극으로 구성된 연료전지를 제작하여 방전전류 변화에 따른 셀전압을 측정하였다. 방전 전류밀도 값이 66.7 μA/cm2에서 셀 전압은 0.5±0.0 V였고, 셀 전력량은 최대치인 33.8±2.5 μW/cm2를 나타내었다.
The study aimed to develop a high-power enzymatic electrode for a wearable fuel cell that generates electricity utilizing lactate present in a sweat as fuel. Anode was fabricated by immobilizing lactate oxidase (LOx) on flexible carbon paper. As the lactate concentration in the electrolyte solution increased, the amount of current generated by catalysis of lactate oxidase increased. The immobilized LOx generated 1.5-times greater oxidation current density in the presence of gold nanoparticles than carbon paper only. Bilirubin oxidase (BOD)-immobilized cathode generated a larger amount of reduction current in the electrolyte saturated with oxygen than purged with nitrogen. A fuel cell composed of two electrodes was fabricated and cell voltage was measured under different discharge current. At the discharge current density of 66.7 μA/cm2, the cell voltage was 0.5±0.0 V leading to maximum cell power density of 33.8±2.5 μW/cm2.
References
Xiao XX, Xia HQ, Wu RR, Bai L, Yan L, Magner E, Cosnier S, Lojou E, Zhu ZG, Liu AH, Chem. Rev., 119(16), 9509 (2019)
Bahar T, Yazici S, Electroanalysis, 32, 1304 (2020)
Derbyshire PJ, Barr H, Davis F, Higson SP, J. Physiol. Sci., 62, 429 (2012)
He W, Wang C, Wang H, Jian M, Lu W, Liang X, Zhang X, Yang F, Zhang Y, Sci. Adv., 5, eaax06 (2019)
Chung M, Fortunato G, Radacsi N, J. R. Soc. Interface, 16, 201902 (2019)
Nagamine K, Mano T, Nomura A, Ichimura Y, Izawa R, Furusawa H, Matsui H, Kumaki D, Tokito S, Sci. Rep., 9, 10102 (2019)
Currano L, Sage FC, Hagedon M, Hamilton L, Patrone J, Gerasopoulos K, Sci. Rep., 8, 15890 (2018)
Anastasova S, Crewther B, Bembnowicz P, Curto V, IP HMD, Rosa V, Yang GZ, Biosens. Bioelectron., 93, 139 (2017)
Patterson MJ, Galloway SDR, Nimmo MA, Exp. Physiol., 85(6), 869 (2000)
Zhou JY, Liu Y, Mo XM, Han CW, Meng XJ, Li Q, Wang YJ, Zhang A, J. Phys., 1507, 102044 (2020)
Shitanda I, Takamatsu K, Niiyama A, Mikawa T, Hoshi Y, Itagaki M, Tsujimura S, J. Power Sources, 436, 226844 (2019)
Wang K, Du L, Wei Q, Zhang J, Zhang G, Xing W, Sun S, Appl. Mat. Inteface, 11, 42744 (2019)
Bandodkar AJ, You JM, Kim NH, Gu Y, Kumar R, et al., Energy Environ. Sci., 10, 1581 (2017)
Gamero M, Pariente F, Lorenzo E, Alonso C, Biosens. Bioelectron., 25, 2038 (2010)
Jahn B, Jonasson NSW, Hu H, Singer H, Pol A, Good NM, et al., J. Biol. Inorg. Chem, 25, 199 (2020)
Loew N, Tsugawa W, Nagae D, Kojima K, Sode K, Sensors, 17, 2636 (2017)
McKee T, Mckee JR, Biochemistry: The Molecular Basis of Life, 5th ed., Oxford, New York, NY (2013).
Basso A, Serban S, Mol. Catal., 479, 110607 (2019)
Schlesinger O, pasi M, Dandela R, Meijter MM, Alfonta L, Phys. Chem. Chem. Phys., 20, 6159 (2018)
Bollella P, Katz E, Sensors, 20, 3517 (2020)
Deka J , Paul A, Chattopadhyay A, RSC Adv., 2, 4736 (2012)
Lee SJ, Appl. Chem. Eng., 27(2), 185 (2016)
Gaspar S, Brinduse E, Vasilescu A, Chemosensors, 8, 126 (2020)
Takahashi Y, Kitazumi Y, Shirai O, Kano K, J. Electroanal. Chem., 382, 158 (2019)
Pankratov DV, et al., Acta Nature, 6(1), 102 (2014)
Kannan P, Chen H, Lee VTW, Kim DH, Talanta, 86, 400 (2011)
Paradowska E, Arkusz K, Pijanowska DG, Materials, 13, 4269 (2020)
Stine KJ, Biochemistry Insight, 10, 1 (2017)
Gamella M, Koushanpour A, Katz E, Bioelectrochemistry, 119, 33 (2018)
Sharma T, Naik S, Gopal A, Zhang XJ, MRS Energy Sustain., 2, E7 (2015)
Payne ME, Zamarayeva A, Pister VI, Yamamoto NAD, Arias AC, Sci. Rep., 9, 13720 (2019)
Bahar T, Yazici S, Electroanalysis, 32, 1304 (2020)
Derbyshire PJ, Barr H, Davis F, Higson SP, J. Physiol. Sci., 62, 429 (2012)
He W, Wang C, Wang H, Jian M, Lu W, Liang X, Zhang X, Yang F, Zhang Y, Sci. Adv., 5, eaax06 (2019)
Chung M, Fortunato G, Radacsi N, J. R. Soc. Interface, 16, 201902 (2019)
Nagamine K, Mano T, Nomura A, Ichimura Y, Izawa R, Furusawa H, Matsui H, Kumaki D, Tokito S, Sci. Rep., 9, 10102 (2019)
Currano L, Sage FC, Hagedon M, Hamilton L, Patrone J, Gerasopoulos K, Sci. Rep., 8, 15890 (2018)
Anastasova S, Crewther B, Bembnowicz P, Curto V, IP HMD, Rosa V, Yang GZ, Biosens. Bioelectron., 93, 139 (2017)
Patterson MJ, Galloway SDR, Nimmo MA, Exp. Physiol., 85(6), 869 (2000)
Zhou JY, Liu Y, Mo XM, Han CW, Meng XJ, Li Q, Wang YJ, Zhang A, J. Phys., 1507, 102044 (2020)
Shitanda I, Takamatsu K, Niiyama A, Mikawa T, Hoshi Y, Itagaki M, Tsujimura S, J. Power Sources, 436, 226844 (2019)
Wang K, Du L, Wei Q, Zhang J, Zhang G, Xing W, Sun S, Appl. Mat. Inteface, 11, 42744 (2019)
Bandodkar AJ, You JM, Kim NH, Gu Y, Kumar R, et al., Energy Environ. Sci., 10, 1581 (2017)
Gamero M, Pariente F, Lorenzo E, Alonso C, Biosens. Bioelectron., 25, 2038 (2010)
Jahn B, Jonasson NSW, Hu H, Singer H, Pol A, Good NM, et al., J. Biol. Inorg. Chem, 25, 199 (2020)
Loew N, Tsugawa W, Nagae D, Kojima K, Sode K, Sensors, 17, 2636 (2017)
McKee T, Mckee JR, Biochemistry: The Molecular Basis of Life, 5th ed., Oxford, New York, NY (2013).
Basso A, Serban S, Mol. Catal., 479, 110607 (2019)
Schlesinger O, pasi M, Dandela R, Meijter MM, Alfonta L, Phys. Chem. Chem. Phys., 20, 6159 (2018)
Bollella P, Katz E, Sensors, 20, 3517 (2020)
Deka J , Paul A, Chattopadhyay A, RSC Adv., 2, 4736 (2012)
Lee SJ, Appl. Chem. Eng., 27(2), 185 (2016)
Gaspar S, Brinduse E, Vasilescu A, Chemosensors, 8, 126 (2020)
Takahashi Y, Kitazumi Y, Shirai O, Kano K, J. Electroanal. Chem., 382, 158 (2019)
Pankratov DV, et al., Acta Nature, 6(1), 102 (2014)
Kannan P, Chen H, Lee VTW, Kim DH, Talanta, 86, 400 (2011)
Paradowska E, Arkusz K, Pijanowska DG, Materials, 13, 4269 (2020)
Stine KJ, Biochemistry Insight, 10, 1 (2017)
Gamella M, Koushanpour A, Katz E, Bioelectrochemistry, 119, 33 (2018)
Sharma T, Naik S, Gopal A, Zhang XJ, MRS Energy Sustain., 2, E7 (2015)
Payne ME, Zamarayeva A, Pister VI, Yamamoto NAD, Arias AC, Sci. Rep., 9, 13720 (2019)