Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 8, 2021
Accepted March 17, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구
A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O)
(재)한국석회석신소연구소 첨단소재팀, 27003 충북 단양군 매포읍 우덕길 18-1 1충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Advanced Materials Team, Korea Institute of Limestone and Advanced Materials, 18-1, Udeok-gil, Maepo-up, Danyang-gun, Chungcheongbuk-do, 27003, Korea 1Department Chemical Engineering of Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungcheongbuk-do, 28644, Korea
hdj1057@kilam.re.kr
Korean Chemical Engineering Research, August 2021, 59(3), 399-409(11), 10.9713/kcer.2021.59.3.399 Epub 20 July 2021
Download PDF
Abstract
백운석을 칼슘/마그네슘 화합물 소재로 활용하기 위해 마이크로웨이브 소성로(950 °C, 60 min)을 이용하여 소성하여 고반응성 경소백운석(CaO·MgO)을 제조하였다. Hydration test(ASTM C 110) 기준에 따라 실험을 실시하였으며 수화반응성 결과, 중 반응성(max 74.1 °C, 5 min)으로 분석 되었다. 경소백운석의 수화 반응에 기초하여 경소백운석과 염(MgCl2·6H2O) (a) 1:1, (b) 1:1.5, (c) 1:2 wt%로 실험을 진행하였다. 염 첨가 비율이 증가 할수록 경소백운석의 MgO가 Mg(OH)2로 증가되는 것을 X-선 회절 분석 결과 확인하였다. 분리 반응 후 칼슘은 CaCl2 용액 상태로 80 °C, 24 시간 동안 교반시켜 흰색 결정체인 CaCl2가 제조 되었다. XRD 분석 결과, CaCl2·(H2O)x(calcium chloride hydrate)로 경소백운석과 염 첨가 반응에 의한 CaO는 CaCl2로 분리 되는 것을 확인하였다. 그리고 CaCl2 용액에 NaOH 첨가 반응으로 순도 99 wt%의 Ca(OH)2 합성하였으며, 합성된 Ca(OH)2를 열처리 과정을 통하여 CaO를 제조하였다. 탄산칼슘을 제조하기 위해 CaCl2 용액에 Na2CO3 첨가 반응으로 CaCO3를 합성하였으며, 형상은 큐빅(cubic) 형태로 순도 99 wt%로 분석 되었다.
In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 °C, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 °C, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 °C, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.
References
Hwang DJ, Ryu JY, Park JH, Yu YH, Lee SK, Cho KH, Han C, Lee JD, J. Ind. Eng. Chem., 18(6), 1956 (2012)
Hwang DJ, Ryu JY, Park JH, Yu YH, Choi MK, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 19(5), 1507 (2013)
Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727 (2014)
Hwang DJ, Cho KH, Choi MK, Yu YH, Lee SK, Ahn JW, Lim GI, Han C, Lee JD, Korean J. Chem. Eng., 28(9), 1927 (2011)
Bes AM, Ottovon- Guericke University Magdeburg, Germany, 2006(Dr. -Ing. Thesis).
Chatterjee A, Basak T, Ayappa KG, J. AIChE, 44(10), 2302 (1998)
Kenkre VM, Skala L, Weiser MW, J. Materials Science, 26, 2483 (1991)
Pawel K, Proceedings of the 41st European Microwave Conference, Manchester, UK, 996 (2011).
Clemens J, Saltiel C, Int. J. Heat Mass Transf., 39(8), 1665 (1996)
Brosnan KH, Messing GL, Agrawal DK, J. Am. Ceram. Soc., 86(8), 1307 (2003)
Zhao C, Vleugels J, Acta Mater., 48, 3795 (2000)
Das S, Mukhopadhyay AK, Bull. Mater. Sci., 32(1), 1 (2009)
Metaxas AC, Power Engineering Journal., 5(5), 237 (1991).
Panda SS, Singh V, Upadhyaya A, Scripta Materialia., 54, 2179 (2006)
Changhong D, Xianpeng Z, Jinsong Z, Journal of Materials Science, 32, 2469 (1997).
Garcia-Carmona J, Gomez-Morales J, Powder Technology, 130, 307 (2003)
Shin BC, Thesis, Department of Chemical Engineering Graduate School, Kangwon National University, Korea(2001).
http://www.samyangcorp.com/CO43/Details/28?searchCate=1.
Mochida Y, Miyazawa K, Tazawa M, J. Soc. Inor. Mater. Japan, 36, 20 (1958)
Kasai J, J. Soc. Inor. Mater. Japan, 63, 75 (1968)
Nishikawa Y, J. Soc. Inor. Mater. Japan, 92, 7 (1968)
Nishino T, J. Soc. Inor. Mater. Japan, 248, 3 (1994)
Jackson LC, et al., Kirk-Othmer Encyclopedia of chemical Technology, 3rd ed., Vol. 15, New York, John Wily & Sons, Inc., 675 (1995).
Lacson JG, Cometta S, Yoneyama M, In: Chemical Economics Handbook. Menlo Park, CA, SRI International, 93 (2000).
Hwang DJ, Yu YH, Baek CS, Lee GM, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 30, 309 (2015)
Hwang DJ, Yu YH, Korea Chem. Eng. Res., 57(6), 812 (2019)
Lee GJ, Kim WB, Kim JY, Korea Chem. Eng. Res., 31(3), 263 (1993)
Jeong KS, Park IS, KR patent 10-2015-0060672(2015).
Mun JK, Yun YK, Kwak MH, KR patent 10-2011-0141377(2011).
McIntosh RM, Sharp JH, Wilburn FW, Thermochimica Acta, 165(2), 281 (1990)
Rat’ko AI, Ivanets AI, Kulak AI, Inorganic Materials, 47(12), 1372 (2011)
Wiedemann HG, Bayer G, Thermochimica Acta, 121, 479 (1987)
Hwang DJ, Ryu JY, Park JH, Yu YH, Choi MK, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 19(5), 1507 (2013)
Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727 (2014)
Hwang DJ, Cho KH, Choi MK, Yu YH, Lee SK, Ahn JW, Lim GI, Han C, Lee JD, Korean J. Chem. Eng., 28(9), 1927 (2011)
Bes AM, Ottovon- Guericke University Magdeburg, Germany, 2006(Dr. -Ing. Thesis).
Chatterjee A, Basak T, Ayappa KG, J. AIChE, 44(10), 2302 (1998)
Kenkre VM, Skala L, Weiser MW, J. Materials Science, 26, 2483 (1991)
Pawel K, Proceedings of the 41st European Microwave Conference, Manchester, UK, 996 (2011).
Clemens J, Saltiel C, Int. J. Heat Mass Transf., 39(8), 1665 (1996)
Brosnan KH, Messing GL, Agrawal DK, J. Am. Ceram. Soc., 86(8), 1307 (2003)
Zhao C, Vleugels J, Acta Mater., 48, 3795 (2000)
Das S, Mukhopadhyay AK, Bull. Mater. Sci., 32(1), 1 (2009)
Metaxas AC, Power Engineering Journal., 5(5), 237 (1991).
Panda SS, Singh V, Upadhyaya A, Scripta Materialia., 54, 2179 (2006)
Changhong D, Xianpeng Z, Jinsong Z, Journal of Materials Science, 32, 2469 (1997).
Garcia-Carmona J, Gomez-Morales J, Powder Technology, 130, 307 (2003)
Shin BC, Thesis, Department of Chemical Engineering Graduate School, Kangwon National University, Korea(2001).
http://www.samyangcorp.com/CO43/Details/28?searchCate=1.
Mochida Y, Miyazawa K, Tazawa M, J. Soc. Inor. Mater. Japan, 36, 20 (1958)
Kasai J, J. Soc. Inor. Mater. Japan, 63, 75 (1968)
Nishikawa Y, J. Soc. Inor. Mater. Japan, 92, 7 (1968)
Nishino T, J. Soc. Inor. Mater. Japan, 248, 3 (1994)
Jackson LC, et al., Kirk-Othmer Encyclopedia of chemical Technology, 3rd ed., Vol. 15, New York, John Wily & Sons, Inc., 675 (1995).
Lacson JG, Cometta S, Yoneyama M, In: Chemical Economics Handbook. Menlo Park, CA, SRI International, 93 (2000).
Hwang DJ, Yu YH, Baek CS, Lee GM, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 30, 309 (2015)
Hwang DJ, Yu YH, Korea Chem. Eng. Res., 57(6), 812 (2019)
Lee GJ, Kim WB, Kim JY, Korea Chem. Eng. Res., 31(3), 263 (1993)
Jeong KS, Park IS, KR patent 10-2015-0060672(2015).
Mun JK, Yun YK, Kwak MH, KR patent 10-2011-0141377(2011).
McIntosh RM, Sharp JH, Wilburn FW, Thermochimica Acta, 165(2), 281 (1990)
Rat’ko AI, Ivanets AI, Kulak AI, Inorganic Materials, 47(12), 1372 (2011)
Wiedemann HG, Bayer G, Thermochimica Acta, 121, 479 (1987)