Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 16, 2021
Accepted July 1, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Effects of Reactor Type on the Economy of the Ethanol Dehydration Process: Multitubular vs. Adiabatic Reactors
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology,, Seoul, 01811, Korea
Korean Chemical Engineering Research, August 2021, 59(3), 467-479(13), 10.9713/kcer.2021.59.3.467 Epub 20 July 2021
Download PDF
Abstract
A kinetic model was developed for the dehydration of ethanol to ethylene based on two parallel reaction pathways. Kinetic parameters were estimated by fitting experimental data of powder catalysts in a lab-scale test, and the effectiveness factor was determined using data from pellet-type catalysts in bench-scale experiments. The developed model was used to design a multitubular fixed-bed reactor (MTR) and an adiabatic reactor (AR) at a 10 ton per day scale. The two different reactor types resulted in different process configurations: the MTR consumed the ethanol completely and did not produce the reaction intermediate, diethyl ether (DEE), resulting in simple separation trains at the expense of high equipment cost for the reactor, whereas the AR required azeotropic distillation and cryogenic distillation to recycle the unreacted ethanol and to separate the undesired DEE, respectively. Quantitative analysis based on the equipment and annual energy costs showed that, despite high equipment cost of the reactor, the MTR process had the advantages of high productivity and simple separation trains, whereas the use of additional separation trains in the AR process increased both the total equipment cost and the annual energy cost per unit production rate.
Keywords
References
Sun J, Wang Y, ACS Catal., 4, 1078 (2014)
Zhang MH, Yu YZ, Ind. Eng. Chem. Res., 52(28), 9505 (2013)
Galadima A, Muraza O, J. Ind. Eng. Chem., 31, 1 (2015)
Kochar NK, Merims R, Padia AS, Chem. Eng. Prog., 77, 66 (1981)
Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD, Appl. Catal. A: Gen., 407(1-2), 1 (2011)
Ren T, et al., Resour. Conserv. Recycl., 53(12), 653 (2009)
Yakovleva IS, et al., Catal. Ind., 8, 152 (2016)
Christiansen MA, Mpourmpakis G, Vlachos DG, J. Catal., 323, 121 (2015)
Kagyrmanova AP, et al., Chem. Eng. J., 176-177, 188 (2011)
Kang M, Dewilde JF, Bhan A, ACS Catal., 5, 602 (2015)
Roy S., et al., ACS Catal., 2, 1846 (2012)
Chiang H, Bhan A, J. Catal., 271(2), 251 (2010)
Gayubo AG, Alonso A, Valle B, Aguayo AT, Bilbao J, Ind. Eng. Chem. Res., 49(21), 10836 (2010)
Phillips CB, Datta R, Ind. Eng. Chem. Res., 36(11), 4466 (1997)
Phung TK, Busca G, Chem. Eng. J., 272, 92 (2015)
Reyniers MF, Marin GB, Annu. Rev. Chem. Biomol. Eng., 5, 563 (2014)
DeWilde JF, et al., ACS Catal., 3, 798 (2013)
DeWilde JF, Bhan A, Appl. Catal. A: Gen., 502, 361 (2015)
Taarning E, et al., Energy Environ. Sci., 4(3), 793 (2011)
Gayubo AG, Tarrio AM, Aguayo AT, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 40(16), 3467 (2001)
Alexopoulos K, John M, Van der Borght K, Galvita V, Reyniers MF, Marin GB, J. Catal., 339, 173 (2016)
Haro P, Ollero P, Trippe F, Fuel Process. Technol., 114, 35 (2013)
Becerra J, Figueredo M, Cobo M, J. Environ. Chem. Eng., 5(2), 1554 (2017)
Jernberg J, et al., Ethanol Dehydration to Green Ethylene. 2015, Lund: Lund University.
Cameron G, et al., Process Design for the Production of Ethylene from Ethanol. 2012, Philadelphia, PA: University of Pennsylvania.
Seo JH, Chae HJ, Kim TW, Jeong KE, Kim CU, Lee SB, Jeong SY, Korean Chem. Eng. Res., 49(6), 726 (2011)
Jasra RV, Tyagi B, Badheka YM, Choudary VN, Bhat TSG, Ind. Eng. Chem. Res., 42(14), 3263 (2003)
Fogler HS, Elements of Chemical Reaction Engineering. 1999, New Jersey: Prentice-Hall.
Boudart M, AlChE J., 18(3), 465 (1972)
Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58(5), 18 (1966)
Seider WD, et al., Product and Process Design Principles: Synthesis, Analysis and Design. 2008, New York, NY: John Wiley & Sons.
Sinnott RK, Chemical Engineering Design. Vol. 6. 2005, New York, NY: Elsevier. 1056.
Hall S, Rules of Thumb for Chemical Engineers. 2012, Oxford, UK: Butterworth-Heinemann.
Douglas JM, Conceptual Design of Chemical Processes. 1988, New York, NY: McGraw-Hill.
Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 41(17), 4216 (2002)
Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J, Chem. Eng. J., 167(1), 262 (2011)
Gayubo AG, Aguayo AT, Castilla M, Moran AL, Bilbao J, Chem. Eng. Commun., 191(7), 944 (2004)
Campesi MA, Mariani NJ, Pramparo MC, Barbero BP, Cadus LE, Martinez OM, Barreto GF, Catal. Today, 176(1), 225 (2011)
Nowicki L, Ledakowicz S, Bukur DB, Chem. Eng. Sci., 56(3), 1175 (2001)
Todic B, Bhatelia T, Froment GF, Ma WP, Jacobs G, Davis BH, Bukur DB, Ind. Eng. Chem. Res., 52(2), 669 (2013)
Yang J, Liu Y, Chang J, Wang YN, Bai L, Xu YY, Xiang HW, Li YW, Zhong B, Ind. Eng. Chem. Res., 42(21), 5066 (2003)
Lim HW, Jun HJ, Park MJ, Kim HS, Bae JW, Ha KS, Chae HJ, Jun KW, Korean J. Chem. Eng., 27(6), 1760 (2010)
Park N, Park MJ, Ha KS, Lee YJ, Jun KW, Fuel, 129, 163 (2014)
Wang F, Luo M, Xiao WD, Cheng XW, Long YC, Appl. Catal. A: Gen., 393(1-2), 161 (2011)
Hong Kong Boilers and Pressure Vessels Authority, Code of Practice for Thermal Oil Heaters. 2008, Hong Kong: Hong Kong Labour Department.
Couper JR, Chemical Process Equipment: Selection and Design. 1990, Amsterdam Boston: Elsevier. 755.
Beste A, Overbury SH, J. Phys. Chem. C, 119, 2447 (2015)
Guo SY, Yu CL, Gu XH, Jin WQ, Zhong J, Chen CL, J. Membr. Sci., 376(1-2), 40 (2011)
Zhang MH, Yu YZ, Ind. Eng. Chem. Res., 52(28), 9505 (2013)
Galadima A, Muraza O, J. Ind. Eng. Chem., 31, 1 (2015)
Kochar NK, Merims R, Padia AS, Chem. Eng. Prog., 77, 66 (1981)
Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD, Appl. Catal. A: Gen., 407(1-2), 1 (2011)
Ren T, et al., Resour. Conserv. Recycl., 53(12), 653 (2009)
Yakovleva IS, et al., Catal. Ind., 8, 152 (2016)
Christiansen MA, Mpourmpakis G, Vlachos DG, J. Catal., 323, 121 (2015)
Kagyrmanova AP, et al., Chem. Eng. J., 176-177, 188 (2011)
Kang M, Dewilde JF, Bhan A, ACS Catal., 5, 602 (2015)
Roy S., et al., ACS Catal., 2, 1846 (2012)
Chiang H, Bhan A, J. Catal., 271(2), 251 (2010)
Gayubo AG, Alonso A, Valle B, Aguayo AT, Bilbao J, Ind. Eng. Chem. Res., 49(21), 10836 (2010)
Phillips CB, Datta R, Ind. Eng. Chem. Res., 36(11), 4466 (1997)
Phung TK, Busca G, Chem. Eng. J., 272, 92 (2015)
Reyniers MF, Marin GB, Annu. Rev. Chem. Biomol. Eng., 5, 563 (2014)
DeWilde JF, et al., ACS Catal., 3, 798 (2013)
DeWilde JF, Bhan A, Appl. Catal. A: Gen., 502, 361 (2015)
Taarning E, et al., Energy Environ. Sci., 4(3), 793 (2011)
Gayubo AG, Tarrio AM, Aguayo AT, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 40(16), 3467 (2001)
Alexopoulos K, John M, Van der Borght K, Galvita V, Reyniers MF, Marin GB, J. Catal., 339, 173 (2016)
Haro P, Ollero P, Trippe F, Fuel Process. Technol., 114, 35 (2013)
Becerra J, Figueredo M, Cobo M, J. Environ. Chem. Eng., 5(2), 1554 (2017)
Jernberg J, et al., Ethanol Dehydration to Green Ethylene. 2015, Lund: Lund University.
Cameron G, et al., Process Design for the Production of Ethylene from Ethanol. 2012, Philadelphia, PA: University of Pennsylvania.
Seo JH, Chae HJ, Kim TW, Jeong KE, Kim CU, Lee SB, Jeong SY, Korean Chem. Eng. Res., 49(6), 726 (2011)
Jasra RV, Tyagi B, Badheka YM, Choudary VN, Bhat TSG, Ind. Eng. Chem. Res., 42(14), 3263 (2003)
Fogler HS, Elements of Chemical Reaction Engineering. 1999, New Jersey: Prentice-Hall.
Boudart M, AlChE J., 18(3), 465 (1972)
Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58(5), 18 (1966)
Seider WD, et al., Product and Process Design Principles: Synthesis, Analysis and Design. 2008, New York, NY: John Wiley & Sons.
Sinnott RK, Chemical Engineering Design. Vol. 6. 2005, New York, NY: Elsevier. 1056.
Hall S, Rules of Thumb for Chemical Engineers. 2012, Oxford, UK: Butterworth-Heinemann.
Douglas JM, Conceptual Design of Chemical Processes. 1988, New York, NY: McGraw-Hill.
Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J, Ind. Eng. Chem. Res., 41(17), 4216 (2002)
Gayubo AG, Alonso A, Valle B, Aguayo AT, Olazar M, Bilbao J, Chem. Eng. J., 167(1), 262 (2011)
Gayubo AG, Aguayo AT, Castilla M, Moran AL, Bilbao J, Chem. Eng. Commun., 191(7), 944 (2004)
Campesi MA, Mariani NJ, Pramparo MC, Barbero BP, Cadus LE, Martinez OM, Barreto GF, Catal. Today, 176(1), 225 (2011)
Nowicki L, Ledakowicz S, Bukur DB, Chem. Eng. Sci., 56(3), 1175 (2001)
Todic B, Bhatelia T, Froment GF, Ma WP, Jacobs G, Davis BH, Bukur DB, Ind. Eng. Chem. Res., 52(2), 669 (2013)
Yang J, Liu Y, Chang J, Wang YN, Bai L, Xu YY, Xiang HW, Li YW, Zhong B, Ind. Eng. Chem. Res., 42(21), 5066 (2003)
Lim HW, Jun HJ, Park MJ, Kim HS, Bae JW, Ha KS, Chae HJ, Jun KW, Korean J. Chem. Eng., 27(6), 1760 (2010)
Park N, Park MJ, Ha KS, Lee YJ, Jun KW, Fuel, 129, 163 (2014)
Wang F, Luo M, Xiao WD, Cheng XW, Long YC, Appl. Catal. A: Gen., 393(1-2), 161 (2011)
Hong Kong Boilers and Pressure Vessels Authority, Code of Practice for Thermal Oil Heaters. 2008, Hong Kong: Hong Kong Labour Department.
Couper JR, Chemical Process Equipment: Selection and Design. 1990, Amsterdam Boston: Elsevier. 755.
Beste A, Overbury SH, J. Phys. Chem. C, 119, 2447 (2015)
Guo SY, Yu CL, Gu XH, Jin WQ, Zhong J, Chen CL, J. Membr. Sci., 376(1-2), 40 (2011)