Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 13, 2021
Accepted August 30, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
담수 사용 NaBH4 가수 분해반응에 의한 수소발생
Generation of Hydrogen from Hydrolysis Reaction of NaBH4 Using Fresh Water
순천대학교 화학공학과, 57922 전남 순천시 매곡동 315
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam, 57922, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, November 2021, 59(4), 503-507(5), 10.9713/kcer.2021.59.4.503 Epub 2 November 2021
Download PDF
Abstract
이동용 고분자전해질 연료전지(PEMFC)의 수소발생용으로써 NaBH4는 많은 장점을 갖고 있다. 야외에서 PEMFC가 이송형으로 사용될 때 증류수대신 담수를 이용해 NaBH4 가수분해하면 경제적이다. 그래서 본 연구에서는 NaBH4 가수분해 과정에 증류수대신 담수를 이용해 수소를 발생시켰다. 활성탄 담지 Co-P-B/C 촉매를 사용해 NaBH4 가수분해 특성에 대해 연구하였다. 담수는 NaBH4 가수분해과정에서 4수화물을 발생시키지 않았고, 증류수는 4수화물 부산물이 생성되어 가수분해과정에서 많은 물이 소모되어서 NaBH4 25% 이상 고농도에서 반응 종료시점에는 건조한 부산물과 미반응 NaBH4가 남았음을 확인하였다. 이 결과 담수를 사용했을 때 NaBH4 25% 이상 고농도에서 증류수보다 수소 수율과 수소발생속도가 더 높아 무인항공기등 이송형 연료전지에도 적용하기에 적합함을 보였다.
Sodium borohydride, NaBH4, has many advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFC). When PEMFC is used outdoors as a transport type, it is economical to hydrolyze NaBH4 using fresh water instead of distilled water. Therefore, in this study, hydrogen was generated using fresh water instead of distilled water during the NaBH4 hydrolysis process. The properties of NaBH4 hydrolysis were studied using an activated carbon-supported Co-P-B/C catalyst. Fresh water did not generate tetrahydrate during the NaBH4 hydrolysis process, and distilled water produced tetrahydrate by-products, which consumed a lot of water during the hydrolysis process, indicating that at the end of the reaction at a high concentration of 25% or more of NaBH4, dry by-products and unreacted NaBH4 remained. As a result, when fresh water was used, the hydrogen yield and hydrogen generation rate were higher than that of distilled water at a high concentration of 25% or more of NaBH4, indicating that it is suitable for use in transport-type fuel cells such as unmanned aerial vehicles.
References
Commercial Drones: Highways in the Sky, Worldwide, 2015 to 2021, http//wintergreenresearch.com/reports/ Commer-cial UAS.html.
Bradley TH, Moffitt BA, Mavris DN, Parekh DE, J. Power Sources, 171(2), 793 (2007)
Liu BH, Li ZP, J. Power Sources, 187(2), 527 (2009)
Fernandes R, Patel N, Miotello A, Jaiswal R, Kothari DC, Int. J. Hydrog. Energy, 36(21), 13379 (2011)
Moon GY, Lee SS, Yang GR, Song KH, Korean J. Chem. Eng., 27(2), 474 (2010)
Simagina VI, Netskina OV, Komova OV, Odegova GV, Kochubei DI, Ishchenko AV, Kinetics and Catalysis, 49(4), 568 (2008).
Simagina VI, Storozhenko PA, Netskina OV, Komova OV, Odegova GV, Samoilenko TY, Gentsler AG, Kinetics and Catalysis, 48(1), 168 (2007).
Demirci UB, Garin F, Catal. Commun., 9, 1167 (2008)
Chen Y, Kim H, Mater. Lett., 62, 1451 (2008)
Hwang B, Jo A, Sin S, Choi D, Nam S, Park K, Korean Chem. Eng. Res., 51(1), 35 (2013)
Lee HR, Na IC, Park KP, Korean Chem. Eng. Res., 54(5), 587 (2016)
Oh SJ, Jung HS, Jeong JJ, Na IC, Ahn HG, Park KP, Korean Chem. Eng. Res., 53(1), 11 (2015)
Lee DW, Oh SH, Kim JS, Kim DH, Park KP, Korean Chem. Eng. Res., 57(6), 758 (2019)
Kim RK, Jung SU, Park EH, Kim SH, Theor. Appl. Chem. Eng., 10(2), 1875 (2004)
Bradley TH, Moffitt BA, Mavris DN, Parekh DE, J. Power Sources, 171(2), 793 (2007)
Liu BH, Li ZP, J. Power Sources, 187(2), 527 (2009)
Fernandes R, Patel N, Miotello A, Jaiswal R, Kothari DC, Int. J. Hydrog. Energy, 36(21), 13379 (2011)
Moon GY, Lee SS, Yang GR, Song KH, Korean J. Chem. Eng., 27(2), 474 (2010)
Simagina VI, Netskina OV, Komova OV, Odegova GV, Kochubei DI, Ishchenko AV, Kinetics and Catalysis, 49(4), 568 (2008).
Simagina VI, Storozhenko PA, Netskina OV, Komova OV, Odegova GV, Samoilenko TY, Gentsler AG, Kinetics and Catalysis, 48(1), 168 (2007).
Demirci UB, Garin F, Catal. Commun., 9, 1167 (2008)
Chen Y, Kim H, Mater. Lett., 62, 1451 (2008)
Hwang B, Jo A, Sin S, Choi D, Nam S, Park K, Korean Chem. Eng. Res., 51(1), 35 (2013)
Lee HR, Na IC, Park KP, Korean Chem. Eng. Res., 54(5), 587 (2016)
Oh SJ, Jung HS, Jeong JJ, Na IC, Ahn HG, Park KP, Korean Chem. Eng. Res., 53(1), 11 (2015)
Lee DW, Oh SH, Kim JS, Kim DH, Park KP, Korean Chem. Eng. Res., 57(6), 758 (2019)
Kim RK, Jung SU, Park EH, Kim SH, Theor. Appl. Chem. Eng., 10(2), 1875 (2004)