Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 29, 2021
Accepted July 1, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
H2S를 포함하는 연료를 사용하기 위한 고체산화물 연료전지용 Sr0.92Y0.08Ti1-xVxO3-δ연료극 특성
Characteristics of Sr0.92Y0.08Ti1-xVxO3-δ (x = 0.01, 0.04, 0.07, 0.12) Anode for Using H2S Containing Fuel in Solid Oxide Fuel Cells
전남대학교 화학공학과, 61186 광주광역시 북구 용봉로 77
Department of Chemical Engineering, Chonnam National University, Gwangju, 61186, Korea
Korean Chemical Engineering Research, November 2021, 59(4), 557-564(8), 10.9713/kcer.2021.59.4.557 Epub 2 November 2021
Download PDF
Abstract
페로브스카이트 구조를 갖는 Sr0.92Y0.08Ti1-xVxO3-δ (SYTV)는 고체산화물 연료 전지(Solid oxide fuel cell, SOFC)에서 H2S를 포함하는 연료를 사용하기 위한 대체 연료극으로 연구되었다. Sr0.92Y0.08TiO3-δ (SYT)의 전기화학적 성능을 향상시키기 위해 페로브스카이트의 B-사이트에 위치한 티타늄을 바나듐으로 치환하였다. 페치니법을 통해 합성된 SYTV는 작동 온도 조건에서 추가적인 부산물의 형성 없이 YSZ(yttria-stabilized zirconia) 전해질과 화학적으로 안정했다. 바나듐의 치환량이 증가함에 따라 산소 공공 결함(Oxygen vacancy)이 증가하였으며, 생성된 산소 공공 결함으로 인해 연료극의 이온 전도도가 증가했다. 전지 성능은 850 °C 순수한 H2 연료 조건에서 바나듐 치환 정도에 따라 1 mol.%의 바나듐이 치환된 경우 19.30 mW/cm2 이고 7 mol.%의 바나듐이 치환된 경우 34.87 mW/cm2이다. 1000 ppm의 H2S를 포함하는 H2 연료조건에서 cell의 최대 전력밀도는 1 mol.%의 경우 22.34 mW/cm2이고 7 mol.%의 경우 73.11 mW/cm2로 증가하였다.
Sr0.92Y0.08Ti1-xVxO3-δ (SYTV) with perovskite structure was investigated as an alternative anode to utilize H2S containing fuels in solid oxide fuel cells. To improve the electrochemical performance of Sr0.92Y0.08TiO3-δ (SYT), vanadium(V) was substituted to titanium(Ti) at the B-site of the SYT perovskites. The SYTV synthesized by the Pechini method was chemically compatible with the YSZ electrolyte without additional by-products formation under the cell fabricating conditions. As increasing V substitution amounts, the oxygen vacancies increased, resulting to increasing ionic conductivity of the anode. The cell performance in pure H2 at 850 °C is 19.30 mW/cm² and 34.87 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively. The cell performance using H2 fuel containing 1000 ppm of H2S at 850 °C was 23.37 mW/cm² and 73.11 mW/cm2 for a 1 mol.% and 7 mol.% of V substituted anodes, respectively.
Keywords
References
Singhal SC, Solid State Ion., 152, 405 (2002)
Steele BCH, Heinzel A, Nature, 414, 345 (2001)
Minh NQ, J. Am. Ceram. Soc., 76(3), 563 (1993)
Niakolas DK, Appl. Catal. A: Gen., 486, 123 (2014)
Kwak BH, Park J, Yoon H, Kim HH, Kim L, Chung JS, Korean J. Chem. Eng., 31(1), 29 (2014)
Yun JW, Yoon SP, Han J, Park S, Kim HS, Nam SW, J. Electrochem. Soc., 157(12), B1825 (2010)
Pujare NU, Semkow KW, Sammells AF, J. Electrochem. Soc., 134(10), 2639 (1987)
Pujare NU, Tsai KJ, Sammuells AF, J. Electrochem. Soc., 136(12), 2662 (1989)
Yates C, Winnick J, J. Electrochem. Soc., 146(8), 2841 (1999)
Liu M, Wei GL, Luo JL, Sanger AR, Chuang KT, J. Electrochem. Soc., 150(8), A1025 (2003)
Wei GL, Luo JL, Sanger AR, Chuang KT, J. Electrochem. Soc., 151(2), A232 (2004)
Devianto H, Yoon SP, Nam SW, Han J, Lim TH, J. Power Sources, 159(2), 1147 (2006)
He H, Gorte RJ, Vohs JM, Electrochem. Solid St., 8(6), A279 (2005)
Zha S, Tsang P, Cheng Z, Liu M, J. Solid State Chem., 178, 1844 (2005)
Li Y, Wang Z, Li J, Zhu X, Zhang Y, Huang X, Zhou Y, Zhu L, Lu Z, J. Alloy. Compd., 698, 794 (2017)
Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK, Renew. Sust. Energ. Rev., 82, 353 (2018)
Wang S, Liu M, Winnick J, J. Solid State Electr., 5(3), 188 (2001)
Marina OA, Canfield NL, Stevenson JW, Solid State Ion., 149(1-2), 21 (2002)
Yun JW, Ham HC, Kim HS, Song SA, Nam SW, Yoon SP, J. Electrochem. Soc., 160(2), F153 (2013)
Kim KIN, Kim HS, Kim HS, Yun JW, J. Ind. Eng. Chem., 68, 187 (2018)
Kim JH, Yun JW, J. Electrochem. Sci. Tech., 9(2), 133 (2018)
Park EK, Lee S, Yun JW, Appl. Surf. Sci., 429, 171 (2018)
Popa M, Kakihana M, Solid State Ion., 151(1-4), 251 (2002)
Bantawal H, Shenoy US, Bhat DK, Appl. Surf. Sci., 513, 145858 (2020)
Ji P, Gao X, Du X, Zheng C, Luo Z, Cen K, Catal. Sci. Technol., 6, 1187 (2016)
Kim GS, Lee BY, Accardo G, Ham HC, Moon J, Yoon SP, J. Power Sources, 423, 305 (2019)
Bantawal H, Shenoy US, Bhat DK, Appl. Surf. Sci., 513, 145858 (2020)
Cheng Z, “Investigations Into the Interactions Between Sulfur and Anodes for Solid Oxide Fuel Cells” (2008).
Cheng Z, Zha SW, Aguilar L, Liu ML, Solid State Ion., 176(23-24), 1921 (2005)
Izaki M, Omi T, J. Electrochem. Soc., 143(3), L53 (1996)
Yentekakis IV, Vayenas CG, J. Electrochem. Soc., 136(4), 996 (1989)
Steele BCH, Heinzel A, Nature, 414, 345 (2001)
Minh NQ, J. Am. Ceram. Soc., 76(3), 563 (1993)
Niakolas DK, Appl. Catal. A: Gen., 486, 123 (2014)
Kwak BH, Park J, Yoon H, Kim HH, Kim L, Chung JS, Korean J. Chem. Eng., 31(1), 29 (2014)
Yun JW, Yoon SP, Han J, Park S, Kim HS, Nam SW, J. Electrochem. Soc., 157(12), B1825 (2010)
Pujare NU, Semkow KW, Sammells AF, J. Electrochem. Soc., 134(10), 2639 (1987)
Pujare NU, Tsai KJ, Sammuells AF, J. Electrochem. Soc., 136(12), 2662 (1989)
Yates C, Winnick J, J. Electrochem. Soc., 146(8), 2841 (1999)
Liu M, Wei GL, Luo JL, Sanger AR, Chuang KT, J. Electrochem. Soc., 150(8), A1025 (2003)
Wei GL, Luo JL, Sanger AR, Chuang KT, J. Electrochem. Soc., 151(2), A232 (2004)
Devianto H, Yoon SP, Nam SW, Han J, Lim TH, J. Power Sources, 159(2), 1147 (2006)
He H, Gorte RJ, Vohs JM, Electrochem. Solid St., 8(6), A279 (2005)
Zha S, Tsang P, Cheng Z, Liu M, J. Solid State Chem., 178, 1844 (2005)
Li Y, Wang Z, Li J, Zhu X, Zhang Y, Huang X, Zhou Y, Zhu L, Lu Z, J. Alloy. Compd., 698, 794 (2017)
Abdalla AM, Hossain S, Azad AT, Petra PMI, Begum F, Eriksson SG, Azad AK, Renew. Sust. Energ. Rev., 82, 353 (2018)
Wang S, Liu M, Winnick J, J. Solid State Electr., 5(3), 188 (2001)
Marina OA, Canfield NL, Stevenson JW, Solid State Ion., 149(1-2), 21 (2002)
Yun JW, Ham HC, Kim HS, Song SA, Nam SW, Yoon SP, J. Electrochem. Soc., 160(2), F153 (2013)
Kim KIN, Kim HS, Kim HS, Yun JW, J. Ind. Eng. Chem., 68, 187 (2018)
Kim JH, Yun JW, J. Electrochem. Sci. Tech., 9(2), 133 (2018)
Park EK, Lee S, Yun JW, Appl. Surf. Sci., 429, 171 (2018)
Popa M, Kakihana M, Solid State Ion., 151(1-4), 251 (2002)
Bantawal H, Shenoy US, Bhat DK, Appl. Surf. Sci., 513, 145858 (2020)
Ji P, Gao X, Du X, Zheng C, Luo Z, Cen K, Catal. Sci. Technol., 6, 1187 (2016)
Kim GS, Lee BY, Accardo G, Ham HC, Moon J, Yoon SP, J. Power Sources, 423, 305 (2019)
Bantawal H, Shenoy US, Bhat DK, Appl. Surf. Sci., 513, 145858 (2020)
Cheng Z, “Investigations Into the Interactions Between Sulfur and Anodes for Solid Oxide Fuel Cells” (2008).
Cheng Z, Zha SW, Aguilar L, Liu ML, Solid State Ion., 176(23-24), 1921 (2005)
Izaki M, Omi T, J. Electrochem. Soc., 143(3), L53 (1996)
Yentekakis IV, Vayenas CG, J. Electrochem. Soc., 136(4), 996 (1989)