Articles & Issues
- Language
- english
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 10, 2021
Accepted August 30, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Fractal Nature of Magnetic Colloidal Dispersion with Cobalt Iron Oxide and Metal Iron Particles
Department of Chemical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk, 730-701, Korea 1Industry-Academic Cooperation Foundation, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi, Gyeongbuk, 730-701, Korea
Korean Chemical Engineering Research, February 2022, 60(1), 125-131(7), 10.9713/kcer.2022.60.1.125 Epub 24 January 2022
Download PDF
Abstract
The microstructure of highly aggregated colloidal dispersions was investigated by probing the rheological behavior of magnetic suspensions. The dynamic moduli as functions of frequency and strain amplitude are shown to closely resemble that of colloidal gels indicating the formation of network structure. The two types of characteristic critical strain amplitudes, γc and γy, were characterized in terms of the changing microstructure. The amplitude of γc indicates the transition from linear to nonlinear viscoelasticity and depends only on particle volume fraction not magnetic interactions. The study of scaling behavior suggests that it is related to the breakage of interfloc, i.e., floc-floc structure. However, yielding strain, γy, was found to be independent of particle volume fraction as well as magnetic interaction. It relates to extensive deformation resulting in yielding behavior. The scaling of elastic constant, Ge, implies that this yielding behavior and hence γy is due to the breakage of long-range interfloc interactions. Also, the deformation of flocs due to increase strain was indicated from the investigation of the fractal nature.
References
Gravelle AJ, Marangoni AG, J. Colloid Interface Sci., 598, 56 (2021)
Buscall R, Mills PDA, Goodwin JW, Lawson DW, J. Chem. Soc.-Faraday Trans., 84, 4249 (1988)
Khan SA, Zoeller NJ, J. Rheol., 37, 1225 (1993)
Coussot P, Soft Matter, 3, 528 (2007)
O’Grady K, Gilson RG, Hobby PC, J. Magn. Magn. Mater., 95, 341 (1991)
Kanai H, Navrarrete RC, Macosko CW, Scriven LE, Rheol. Acta, 31, 333 (1992)
Navarrete RC, Scriven LE, Macosko CW, J. Colloid Interface Sci., 180(1), 200 (1996)
Potanin AA, Hirko RJ, Peikov VT, Lane AM, J. Rheol., 42(5), 1249 (1998)
Trappe V, Weitz DA, Phys. Rev. Lett., 85, 449 (2000)
Philipse AP, Wierenga AM, Langmuir, 14(1), 49 (1998)
Shih WH, Shih WY, Kim SI, Liu J, Aksay IA, Phys. Rev. A, 42, 4772 (1990)
Ikeda S, Foegeding EA, Hagiwara T, Langmuir, 15(25), 8584 (1999)
Chae BS, Lee YS, Jhon MS, Colloid Polym. Sci., 282, 236 (2004)
Kim HS, Mason TG, Adv. Colloid Interface Sci., 247, 397 (2017)
Lee YS, Chae BS, Lane AM, Wiest JM, Colloids Surf. A: Physicochem. Eng. Asp., 224, 23 (2003)
Pan XD, Mckinley GH, Appl. Phys. Lett., 71, 333 (1997)
Casson N, Rheology of Disperse Systems, Pergamon, London (1959).
Shih WY, Shih WH, Aksay IA, J. Am. Ceram. Soc., 82, 616 (1999)
Chen M, Russel WB, J. Colloid Interface Sci., 141, 564 (1991)
de Gennes PG, Scaling Concepts of Polymer Physics, Cornell University Press, Ithaca, New York (1979).
Sollich P, Lequeux F, Hebraud P, Cates ME, Phys. Rev. Lett., 78, 2020 (1997)
Mason TG, Weitz DA, Phys. Rev. Lett., 74, 1250 (1995)
Buscall R, Mills PDA, Goodwin JW, Lawson DW, J. Chem. Soc.-Faraday Trans., 84, 4249 (1988)
Khan SA, Zoeller NJ, J. Rheol., 37, 1225 (1993)
Coussot P, Soft Matter, 3, 528 (2007)
O’Grady K, Gilson RG, Hobby PC, J. Magn. Magn. Mater., 95, 341 (1991)
Kanai H, Navrarrete RC, Macosko CW, Scriven LE, Rheol. Acta, 31, 333 (1992)
Navarrete RC, Scriven LE, Macosko CW, J. Colloid Interface Sci., 180(1), 200 (1996)
Potanin AA, Hirko RJ, Peikov VT, Lane AM, J. Rheol., 42(5), 1249 (1998)
Trappe V, Weitz DA, Phys. Rev. Lett., 85, 449 (2000)
Philipse AP, Wierenga AM, Langmuir, 14(1), 49 (1998)
Shih WH, Shih WY, Kim SI, Liu J, Aksay IA, Phys. Rev. A, 42, 4772 (1990)
Ikeda S, Foegeding EA, Hagiwara T, Langmuir, 15(25), 8584 (1999)
Chae BS, Lee YS, Jhon MS, Colloid Polym. Sci., 282, 236 (2004)
Kim HS, Mason TG, Adv. Colloid Interface Sci., 247, 397 (2017)
Lee YS, Chae BS, Lane AM, Wiest JM, Colloids Surf. A: Physicochem. Eng. Asp., 224, 23 (2003)
Pan XD, Mckinley GH, Appl. Phys. Lett., 71, 333 (1997)
Casson N, Rheology of Disperse Systems, Pergamon, London (1959).
Shih WY, Shih WH, Aksay IA, J. Am. Ceram. Soc., 82, 616 (1999)
Chen M, Russel WB, J. Colloid Interface Sci., 141, 564 (1991)
de Gennes PG, Scaling Concepts of Polymer Physics, Cornell University Press, Ithaca, New York (1979).
Sollich P, Lequeux F, Hebraud P, Cates ME, Phys. Rev. Lett., 78, 2020 (1997)
Mason TG, Weitz DA, Phys. Rev. Lett., 74, 1250 (1995)