ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
english
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 20, 2021
Accepted October 20, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Mathematical Modelling and Simulation of CO2 Removal from Natural Gas Using Hollow Fibre Membrane Modules

School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
boram.gu@jnu.ac.kr
Korean Chemical Engineering Research, February 2022, 60(1), 51-61(11), 10.9713/kcer.2022.60.1.51 Epub 24 January 2022
downloadDownload PDF

Abstract

Gas separation via hollow fibre membrane modules (HFMM) is deemed to be a promising technology for natural gas sweetening, particularly for lowering the level of carbon dioxide (CO2) in natural gas, which can cause various problems during transportation and process operation. Separation performance via HFMM is affected by membrane properties, module specifications and operating conditions. In this study, a mathematical model for HFMM is developed, which can be used to assess the effects of the aforementioned variables on separation performance. Appropriate boundary conditions are imposed to resolve steady-state values of permeate variables and incorporated in the model equations via an iterative numerical procedure. The developed model is proven to be reliable via model validation against experimental data in the literature. Also, the model is capable of capturing axial variations of process variables as well as predicting key performance indicators. It can be extended to simulate a large-scale plant and identify an optimal process design and operating conditions for improved separation efficiency and reduced cost.

References

Chu Y, He X, Membr., 8(4), 118 (2018)
Rufford TE, Smart S, Watson GCY, Graham BF, Boxall J, Diniz da Costa JC, May EF, J. Pet. Sci. Eng., 94-95, 123 (2012)
Chu YH, Lindbrathen A, Lei LF, He XZ, Hillestad M, Chem. Eng. Res. Des., 148, 45 (2019)
Hosseini SS, Dehkordi JA, Kundu PK, Chem. Prod. Process Model., 11(1), 7 (2016)
He X, Chem. Prod. Process Model., 11(1), 7 (2016).
He X, Energy, Sustainability and Society. 2018.
Zhang Y, Sunarso J, Liu S, Wang R, International Journal of Greenhouse Gas Control. Elsevier January1, 84 (2013).
Khalilpour R, Mumford K, Zhai H, Abbas A, Stevens G, Rubin ES, J. Clean Prod., 103, 286 (2015)
Buonomenna MG, Recent Patents Mater. Sci., 10(1), (2017).
Adewole JK, Ahmad AL, Ismail S, Leo CP, International Journal of Greenhouse Gas Control. Elsevier September 1, 46 2013.
Bazhenov SD, Bildyukevich AV, Volkov AV, Fibers. Multidisciplinary Digital Publishing Institute October 10, 76 2018.
Hafeez S, et al., Frontiers of Chemical Science and Engineering., 720 2021.
Siagian UWR, Raksajati A, Himma NF, Khoiruddin K, Wenten IG, J. Nat. Gas Sci. Eng., 67, 172 (2019)
Sridhar S, Smitha B, Aminabhavi TM, Separation and Purification Reviews., 113 2007.
Sainath K, Modi A, Bellare J, Chem. Eng. J. Adv., 5, 100074 (2021)
Vu DQ, Koros WJ, Miller SJ, Ind. Eng. Chem. Res., 41(3), 367 (2002)
Sridhar S, Veerapur RS, Patil MB, Gudasi KB, Aminabhavi TM, J. Appl. Polym. Sci., 106(3), 1585 (2007)
Lee S, Binns M, Lee JH, Moon JH, Yeo JG, Yeo YK, Lee YM, Kim JK, J. Membr. Sci., 541, 224 (2017)
Falbo F, Brunetti A, Barbieri G, Drioli E, Tasselli F, Appl. Petrochemical Res., 6(4), 439 (2016)
Liu Y, Liu Z, Kraftschik BE, Babu VP, Bhuwania N, Chinn D, Koros WJ, J. Membr. Sci., 632, 119361 (2021)
Liu Y, Liu Z, Morisato A, Bhuwania N, Chinn D, Koros WJ, J. Membr. Sci., 601, 117910 (2020)
Lin HQ, Van Wagner E, Raharjo R, Freeman BD, Roman I, Adv. Mater., 18(1), 39 (2006)
Ibrahim MH, El-Naas MH, Zhang ZE, Van der Bruggen B, Energy Fuels, 32(2), 963 (2018)
Scholz M, Wessling M, Balster J, Chapter 5. Design of Membrane Modules for Gas Separations; 125 2011.
Ahmada F, Lau KK, Lock SSM, Rafiq S, Khan AU, Lee M, J. Ind. Eng. Chem., 21, 1246 (2015)
Qadir S, Hussain A, Ahsan M, Processes, 7(7), 420 (2019)
Ahmad F, Lau KK, Shariff AM, Murshid G, Comput. Chem. Eng., 36, 119 (2012)
Chu Y, He X, Membranes, 8(4), 118 (2018)
Bandehali S, Sanaeepur H, Amooghin AE, Moghadassi A, Modeling in Membranes and Membrane-Based Processes; John Wiley & Sons, Ltd, 201 2020.
Shamsabadi AA, Kargari A, Farshadpour F, Laki S, J. Membr. Sep. Technol., 1, 19 (2012)
Adewole JK, Ahmad AL, Korean J. Chem. Eng., 33(10), 2998 (2016)
Nakao A, Macedo APF, Versiani BM, De QF, Araujo O, De Medeiros JL, Comput. Aided Chem. Eng., 27(C), 1875 (2009)
Hosseini SS, Dehkordi JA, Kundu PK, Korean J. Chem. Eng., 33(11), 3085 (2016)
Lock SSM, Lau KK, Ahmad F, Shariff AM, Int. J. Greenh. Gas Control, 36, 114 (2015)
Ahsan M, Hussain A, Pacific Sci. Rev. A Nat. Sci. Eng., 18(1), 47 (2016)
Hoorfar M, Alcheikhhamdon Y, Chen B, Comput. Chem. Eng., 117, 11 (2018)
Gilassi S, Taghavi SM, Rodrigue D, Kaliaguine S, AIChE J., 64(5), 1766 (2018)
Feng XS, Ivory J, Rajan VSV, AIChE J., 45(10), 2142 (1999)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로