ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received August 31, 2021
Accepted December 14, 2021
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

황산 촉매를 이용한 글루코오스로부터 5-HMF 및 레불린산 생산을 위한 동역학적 연구

Kinetic Study of Glucose Conversion to 5-hydroxymethylfurfural and Levulinic Acid Catalyzed by Sulfuric Acid

경기대학교 화학공학과, 16227 경기도 수원시 이의동 산 94-6
Department of chemical Engineering, Kyonggi University, 154-52, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, Korea
Korean Chemical Engineering Research, May 2022, 60(2), 193-201(9), 10.9713/kcer.2022.60.2.193 Epub 27 April 2022
downloadDownload PDF

Abstract

바이오매스로부터 얻는 5-HMF(5-hydroxymethylfurfural)과 레불린산(LA; levulinic acid)는 그린 플랫폼 화학물질로, 폭넓은 응용분야를 가지며 바이오연료 및 바이오 화학물질로써 사용된다. 본 연구에서는, 글루코오스(D-glucose) 분해 로부터 레불린산 형성의 kinetic를 다양한 온도 및 황산 농도를 통해 연구하였다. 실험은 황산 촉매(1-3 wt%)을 사용하 였으며, 온도(140-200 ℃)는 넓은 범위에서 수행되었다. 글루코오스 용액은 10 ml 황산 용액에 글루코오스 1g을 용해 시켜 만들었다. 반응 속도는 온도에 따라 증가하였고 활성화 에너지는 이전에 보고된 값과 유사한 경향을 보였다. 5- HMF의 최대 농도에 대한 반응 시간은 온도가 증가함에 따라 감소하였다. 또한, 산 농도가 증가함에 따라 5-HMF의 분해속도가 빨라졌다. 황산 촉매의 농도가 증가함에 따라 레불린산의 최대 농도에 도달하는 시간이 줄어들었다. 온도를 계속 높이는 것은 레불린산의 최대 농도를 감소시켰고 휴민의 양을 증가시켰다. 결과를 통해 얻은 kinetic parameters는 5-HMF과 레불린산의 mechanism를 이해하는데 도움을 준다. 또한, 이 연구의 결과는 바이오매스에서 고농도의 레불 린산 및 5-HMF를 얻어내는데 유용한 정보를 제공한다.
5-HMF(5-Hydroxymethylfurfural) and LA(levulinic acid) derived from biomass are green platform chemicals, which have a wide of potential applications as biofules and biochemicals. In this study, the kinetics of LA formation from glucose decomposition with various concentration of sulfuric acid at different temperature was investigated. The experiments were performed in a broad temperature (140-200 ℃), using H2SO4 (1-3 wt%) as the catalyst. Glucose solution was made by dissolving 1 g of glucose in 10 ml of H2SO4 solution. The reactions rates increased with temperature and the activation energy showed a similar tendency to previous reported values. Reaction time for maximum concentration of 5-HMF decreased as the temperature increased. Furthermore, the decomposition of 5-HMF was fast as the acid concentration increased. Reaction time to reach maximum concentration of levulinic acid was reduced as the acid concentration increased. Continuing to raise the temperature decreased the maximum concentration of levulinic acid and increased the amount of humins. On the basis of results, kinetic parameters help to understand mechanism of LA and 5-HMF. In addition, this study provides useful information to achieve high concentration of LA and 5-HMF from biomass.

References

Lakshmanan VI, Gorain B (Eds.), “Innovations and Breakthroughs in the Gold and Silver Industries: Concepts, Applications and Future Trends,” Springer Nature. (2019).
De Corato U, De Bari I, Viola E, Pugliese M, Renew. Sust. Energ. Rev., 88, 326 (2018)
He O, Zhang Y, Wang P, Liu L, Wang Q, Yang N, Li W, Champagne P, Yu H, Catalysts, 11(1), 11 (2021)
Ramli NAS, Amin NAS, Energy Conv. Manag., 95, 10 (2015)
Alonso DM, Bond JQ, Dumesic JA, Green Chem., 12(9), 1493 (2010)
Rosatella AA, Simeonov SP, Frade RF, Afonso CA, Green Chem., 13(4), 754 (2011)
Tong X, Ma Y, Li Y, Appl. Catal. A: Gen., 385(1-2), 1 (2010)
Menegazzo F, Ghedini E, Signoretto M, Molecules, 23(9), 2201 (2018)
Conner AH, Wood BF, Hill CG Jr, Harris JF, “Kinetic Modeling of the Saccharification of Prehydrolyzed Southern Red Oak,” Cellulose: Structure, Modification and Hydrolysis, 281-296(1986).
Kabyemela BM, Adschiri T, Malaluan RM, Arai K, Ind. Eng. Chem. Res., 38(8), 2888 (1999)
Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG, J. Am. Chem. Soc., 135(10), 3997 (2013)
Zhao, Yuan et al., RSC Advances, 8.13, 7235 (2018)
van Putten Robert-Jan et al., Chem. Rev., 113.3, 1499 (2013)
Mukherjee, Biomass Bioenerg., 72, 143 (2015)
Fachri BA, Abdilla RM, Bovenkamp HHVD, Rasrendra CB, Heeres HJ, ACS Sustainable Chem. Eng., 3(12), 3024 (2015)
Weiqi W, Shubin W, Chem. Eng. J., 307, 389 (2017)
Girisuta B, Janssen LPBM, Heeres HJ, Chem. Eng. Res. Des., 84.5, 339 (2006)
Chang, Chun, Xiaojian MA, Peilin CEN, Chin. J. Chem. Eng., 14.5, 708 (2006)
Weingarten, Ronen et al., ChemSusChem, 5.7, 1280 (2012)
Baugh, Kent D, Perry L, McCarty, Biotechnol. Bioeng., 31.1, 50 (1988)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로