Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 7, 2021
Accepted December 14, 2021
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고분자전해질 연료전지의 전극 열화 과정에서 고분자막에 석출된 백금에 관한 연구
Study on the Platinum Deposition in Membrane of Polymer Electrolyte Membrane Fuel Cell during Electrode Degradation Process
순천대학교 화학공학과, 57922 전남 순천시 매곡동 315
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam, 57922, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, May 2022, 60(2), 202-207(6), 10.9713/kcer.2022.60.2.202 Epub 27 April 2022
Download PDF
Abstract
고분자 전해질 연료전지(PEMFC)의 전극 열화에 대한 연구는 전극상에서 Pt의 입자 성장 및 활성면적 감소에 대한 연구가 대부분이다. 고분자막과 접해 있는 전극촉매 Pt의 열화는 고분자막 열화에 영향을 주는데, 이와 관련된 연구는 많지 않다. 본 연구에서는 전극촉매 열화 가속 시험 과정에서 열화된 Pt가 고분자막 내부에 석출되는 현상과 그 영향 에 대해서 연구하였다. 백금 열화 속도를 가속화시키기 위해 전압 변화(0.6 V ↔ 0.9 V)를 30,000 사이클까지 반복했 다. Cathode에 산소를 유입하면서 전압 변화 사이클을 반복했을 때 질소를 유입했을 때 보다 막 내부에 석출된 Pt의 양이 더 많았다. 전압 변화 사이클 횟수가 증가할수록 막 내부에 석출된 Pt의 양이 증가하였고, cathode에서 용해된 Pt 가 anode 쪽으로 이동해 20,000 사이클에서는 막 내부에 전체적으로 균일한 분포를 보였다. 이와 같은 전극촉매 열화 가속 시험과정에서 고분자막의 수소투과 전류밀도는 거의 변하지 않아서, 석출된 Pt가 고분자막의 내구성에는 영향을 주지 않음을 확인하였다.
The study on electrode degradation of Proton Exchange Membrane Fuel Cell (PEMFC) was mainly studied on the particle growth and active area reduction of Pt on the electrode. The degradation of the electrode catalyst Pt in contact with the membrane affects the deterioration of the polymer membrane, but there are not many studies related to this. In this study, the phenomenon of the deposition of deteriorated Pt inside the polymer membrane during the accelerated electrode catalyst degradation test and its effects were studied. The voltage change (0.6 V ↔ 0.9 V) was repeated up to 30,000 cycles to accelerate the platinum degradation rate. When the voltage change cycle was repeated while oxygen was introduced into the cathode, the amount of Pt deposited inside the film was larger than when nitrogen was introduced. As the number of voltage change cycles increased, the amount of Pt deposited inside the membrane increased, and Pt dissolved in the cathode moved toward the anode, showing a uniform distribution throughout the membrane at 20,000 cycles. In the process of the accelerated electrode catalyst degradation test, the hydrogen crossover current density of the membrane did not change, and it was confirmed that the deposited Pt did not affect the durability of the membrane.
References
Wang G, Yu Y, Liu H, Gong C, Wen S, Wang X, Tu Z, Fuel Process. Technol., 179, 203 (2018)
Department of Energy(2016).
New Energy and Industrial Technology Development Organization(2016).
Hydrogen and Fuel Cell Technology Platform in the European Union(2016).
Ministry of Science and Technology of the People’s Republic of China (2016).
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A (Eds.), Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140(10), 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31(13), 1831 (2006)
Pozio A, Silva RF, Francesco MD, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL III, Wayne DN, Zawodinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659 (1994)
Akita T, Taniguchi A, Maekawa J, Siroma Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461 (2006)
Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources, 164(1), 126 (2006)
U.S. Department of Energy and U.S. DRIVE Fuel Cell Technical Team, “Protocols for Testing PEM Fuel Cells and Fuel Cell Components,” Multi-Year Research, Development and Demonstration Plan, 2016 Fuel Cell Section.
Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., “Cell Evaluation and Analysis Protocol Guidline,” NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014).
Song JH, Jeong JJ, Jeong JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 51(3), 325 (2013)
Song JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 51(1), 68 (2013)
Rodgers MP, Bonville LJ, Kunz HR, Slattery DK, Fenton JM, Chem. Rev., 112(11), 6075 (2012)
Department of Energy(2016).
New Energy and Industrial Technology Development Organization(2016).
Hydrogen and Fuel Cell Technology Platform in the European Union(2016).
Ministry of Science and Technology of the People’s Republic of China (2016).
Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A (Eds.), Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140(10), 2872 (1993)
Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127 (2004)
Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrog. Energy, 31(13), 1831 (2006)
Pozio A, Silva RF, Francesco MD, Giorgi L, Electrochim. Acta, 48(11), 1543 (2003)
Xie J, Wood DL III, Wayne DN, Zawodinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104 (2005)
Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659 (1994)
Akita T, Taniguchi A, Maekawa J, Siroma Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461 (2006)
Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources, 164(1), 126 (2006)
U.S. Department of Energy and U.S. DRIVE Fuel Cell Technical Team, “Protocols for Testing PEM Fuel Cells and Fuel Cell Components,” Multi-Year Research, Development and Demonstration Plan, 2016 Fuel Cell Section.
Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., “Cell Evaluation and Analysis Protocol Guidline,” NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014).
Song JH, Jeong JJ, Jeong JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 51(3), 325 (2013)
Song JH, Kim SH, Ahn BK, Ko JJ, Park KP, Korean Chem. Eng. Res., 51(1), 68 (2013)
Rodgers MP, Bonville LJ, Kunz HR, Slattery DK, Fenton JM, Chem. Rev., 112(11), 6075 (2012)