Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 25, 2022
Accepted March 23, 2022
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
동물 유래 폐지방으로부터 초임계 CO2를 이용한 콜라겐 추출
Collagen Extraction Using Supercritical CO2 from Animal-Derived Waste Tissue
(주)도프, 18468 경기도 화성시 동탄대로 635 SH 타임스퀘어 제1동 1506호 1한국기술교육대학교 에너지·신소재·화학 공학부, 31253 충남 천안시 동남구 병천면 충절로 1600
DOF Inc., 635, Dongtan-daero, Hwaseong-si, Gyeonggi-do, 18468, Korea 1School of Energy, Materials and Chemical Engineering, Korea University of Technology & Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan, Chungnam, 31253, Korea
Korean Chemical Engineering Research, August 2022, 60(3), 386-391(6), 10.9713/kcer.2022.60.3.386 Epub 18 July 2022
Download PDF
Abstract
본 연구는 콜라겐을 함유하는 지방흡입 유출물을 초임계 유체 존재 하에 처리하여 지방을 추출하여 콜라겐을 얻어 내는 기술에 대한 것이다. 초임계 용매를 이용하여 동물 유래 지방으로부터 단시간(약 6시간)에 콜라겐 추출물을 얻을 수 있었으며, 원료 대비 질량으로 대략 2~3%의 콜라겐을 얻을 수 있었다. 초임계 추출로 얻어진 추출물을 SDS-PAGE 를 이용하여 콜라겐이 존재함을 확인하였고, 비교적 분자량이 큰 타입1 콜라겐임을 알 수 있었다. 또한, 초임계 추출 에 의해서 얻어진 콜라겐 중에 어떤 성장인자 들이 있는 지 알아보기 위하여 IGF-1, bFGF, VEGF 및 NGF의 성장인 자에 대해서 분석하였으며, 이들 성장인자 들이 추출물에 함유 되어 있음을 알 수 있었다. 초임계 처리 전, 후의 시료 mg 당 DNA함량은 큰차이를 보이지 않았다. 초임계 공정을 이용한 탈세포화 기술에 대해서는 보다 심도 깊은 추가적 인 연구가 필요할 것 같다. 결론적으로 초임계유체를 이용한 용매추출 과정을 통하여 얻어진 세포외기질은 탈세포 및 탈지하여도 일정 함량 이상의 성장인자를 함유하여 생체적합성이 매우 증가될 뿐만 아니라, 조직의 재생을 빠르게 유 도할 수 있음을 알 수 있었다.
This study is about a technique for obtaining collagen by extracting fat by treating collagen-containing liposuction effluent in the presence of supercritical fluid. Using a supercritical solvent, a collagen extract could be obtained from animal-derived fat in a short time (about 6 hours), and about 2-3% of collagen by mass compared to the raw material could be obtained. The presence of collagen in the extract obtained by supercritical extraction was confirmed by SDS-PAGE, and it was confirmed that it was type 1 collagen having a relatively large molecular weight. In addition, the growth factors of IGF-1, bFGF, VEGF and NGF were analyzed to find out which growth factors were present in the collagen obtained by supercritical extraction, and it was found that these growth factors were contained in the extract. There was no significant difference in DNA content per mg of sample before and after supercritical treatment. Further in-depth studies are likely to be needed on decellularization technology using the supercritical process. In conclusion, the extracellular matrix obtained through the solvent extraction process using a supercritical fluid contains growth factors above a certain amount even after decellularization and removal of fat, so that it was found that not only biocompatibility is greatly increased, but also tissue regeneration can be rapidly induced.
References
https://ko.wikipedia.org/wiki/%EC%BD%9C%EB%9D%BC% EA%B2%90.
Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD, J. Biol. Chem., 277, 4223 (2002)
Lafarga T, Hayes M, Meat Sci., 98, 227 (2014)
Schmidt MM, Dornelles RCP, Mello RO, Kubota EH, Mazutti MA, Kempka AP, Demiate IM, Int. Food Res. J., 23, 913 (2016)
Mizuta S, Hwang J, Yoshinaka R, Food Chem., 76, 53 (2002)
Kimura S, Omura Y, Ishida M, Shirai H, Comp Biochem Physiol., 104, 663 (1993)
Nagai T, Suzuki N, Int J. Food Sci. Technol., 35, 497 (2000)
Wang L, Liang Q, Chen T, Wang Z, Xu J, Ma H, Food Hydrocolloids, 38, 104 (2014)
Nagai T, J. Food Sci. Technol., 52, 2344 (2015)
Li D, Mu C, Cai S, Lin W, Ultrason. Sonochem., 16, 605 (2009)
Woo JW, Yu SJ, Cho SM, Lee YB, Kim SB, Food Hydrocolloids, 22, 879 (2008)
Zavareze ER, Silva CM, Mellado MS, Prentice-Hernández C, Química. Nova, 32, 1739 (2009)
Kim HK, Kim YH, Kim YJ, Park HJ, Lee NH, Fisheries Science, 78, 485 (2012)
Kim HK, Kim YH, Park HJ, Lee NH, Fisheries Science, 79, 849 (2013)
Ran XG, Wang LY, J. Sci. Food Agriculture, 94, 585 (2014)
Crapo PM, Gilbert TW, Badylak SF, Biomaterials, 32, 3233 (2011)
Sawada K, Terada DY, Kitamura S, Fujisato T, J. Chem. Technol. Biotechnol., 83, 943 (2008)
Wang JK, Luo B, Guneta V, Li L, Foo SEM, Dai Y, Tan TTY, Tan NS, Choonga C, Wong MTC, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 75, 349 (2017)
Casalia DM, Handletonb RM, Matthews MA, J. Supercrit. Fluids, 131, 72 (2018)
Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD, J. Biol. Chem., 277, 4223 (2002)
Lafarga T, Hayes M, Meat Sci., 98, 227 (2014)
Schmidt MM, Dornelles RCP, Mello RO, Kubota EH, Mazutti MA, Kempka AP, Demiate IM, Int. Food Res. J., 23, 913 (2016)
Mizuta S, Hwang J, Yoshinaka R, Food Chem., 76, 53 (2002)
Kimura S, Omura Y, Ishida M, Shirai H, Comp Biochem Physiol., 104, 663 (1993)
Nagai T, Suzuki N, Int J. Food Sci. Technol., 35, 497 (2000)
Wang L, Liang Q, Chen T, Wang Z, Xu J, Ma H, Food Hydrocolloids, 38, 104 (2014)
Nagai T, J. Food Sci. Technol., 52, 2344 (2015)
Li D, Mu C, Cai S, Lin W, Ultrason. Sonochem., 16, 605 (2009)
Woo JW, Yu SJ, Cho SM, Lee YB, Kim SB, Food Hydrocolloids, 22, 879 (2008)
Zavareze ER, Silva CM, Mellado MS, Prentice-Hernández C, Química. Nova, 32, 1739 (2009)
Kim HK, Kim YH, Kim YJ, Park HJ, Lee NH, Fisheries Science, 78, 485 (2012)
Kim HK, Kim YH, Park HJ, Lee NH, Fisheries Science, 79, 849 (2013)
Ran XG, Wang LY, J. Sci. Food Agriculture, 94, 585 (2014)
Crapo PM, Gilbert TW, Badylak SF, Biomaterials, 32, 3233 (2011)
Sawada K, Terada DY, Kitamura S, Fujisato T, J. Chem. Technol. Biotechnol., 83, 943 (2008)
Wang JK, Luo B, Guneta V, Li L, Foo SEM, Dai Y, Tan TTY, Tan NS, Choonga C, Wong MTC, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 75, 349 (2017)
Casalia DM, Handletonb RM, Matthews MA, J. Supercrit. Fluids, 131, 72 (2018)